Synthetic Liquid Fuels Program

Last updated

The Synthetic Liquid Fuels Program was a program run by the United States Bureau of Mines to create the technology to produce synthetic fuel from coal and oil shale. It was initiated in 1944 during World War II. The Synthetic Liquid Fuels Act approved on April 5, 1944 authorized the use of US$30 million over a five-year period for

Contents

the construction and operation of demonstration plants to produce synthetic liquid fuels from coal, oil shales, agricultural and forestry products, and other substances, in order to aid the prosecution of the war, to conserve and increase the oil resources of the Nation, and for other purposes.

History

The Bureau of Mines first studied the extraction of oil from oil shale between 1925 and 1928.

Between 1928 and 1944, the Bureau experimented with coal liquefaction by hydrogenation using the Bergius process. A small-scale test unit constructed in 1937 had a 100-pound per day continuous coal feed.

Between 1945 and 1948, new laboratories were constructed near Pittsburgh. A synthetic ammonia plant Louisiana, Missouri (Missouri Ordnance Works) was transferred from the Army to the program in 1945. The plant was converted into a coal hydrogenation test facility. By 1949 the plant could produce 200 barrels (8,400 US gal; 32 m3) of oil a day using the Bergius process.

Part of the personnel were German scientists, who had been extracted from Germany by Operation Paperclip.

In 1948, the program was extended to eight years and funding increased to US$60 million. A second facility was constructed at the Louisiana plant, this time using the Fischer–Tropsch process. Completed in 1951, the plant only produced 950 barrels (40,000 US gal; 151 m3) of fuel.

In 1953 the new Republican-led House Appropriations Committee ended funding for the research and the Missouri plant was returned to the Department of the Army. After the 1973 oil crisis the need for domestic syncrude production (as well as substitute natural gas) was recognized and ERDA (subsequently DOE) embarked on a demonstration plants program, which included plants for the SRC-I and SRC-2 processes.

In 1979, after the second oil crisis, the U.S. Congress approved the Energy Security Act forming the Synthetic Fuels Corporation and authorized up to $88 million for synthetic fuels projects. This program focused on implementation of commercially available processes such as Lurgi gasification of lignite and Texaco gasification of coal to feed a gas turbine/combined cycle electric generating system.

In 1986, following the 1985 oil glut, President Reagan signed into law the Consolidated Omnibus Budget Reconciliation Act of 1985 which among other things abolished the Synthetic Fuels Corporation. [ citation needed ] It is estimated that over 40 years the cost of the various efforts at creating synthetic fuels may have totaled as much as $8 billion. [ citation needed ]

See also

Related Research Articles

Oil shale Organic-rich fine-grained sedimentary rock containing kerogen

Oil shale is an organic-rich fine-grained sedimentary rock containing kerogen from which liquid hydrocarbons can be produced, called shale oil. Shale oil is a substitute for conventional crude oil; however, extracting shale oil is more costly than the production of conventional crude oil both financially and in terms of its environmental impact. Deposits of oil shale occur around the world, including major deposits in the United States. A 2016 estimate of global deposits set the total world resources of oil shale equivalent of 6.05 trillion barrels of oil in place.

Syngas Fossil fuel derived from other hydrocarbon sources

Syngas, or synthesis gas, is a fuel gas mixture consisting primarily of hydrogen, carbon monoxide, and very often some carbon dioxide. The name comes from its use as intermediates in creating synthetic natural gas (SNG) and for producing ammonia or methanol. Syngas is usually a product of coal gasification and the main application is electricity generation. Syngas is combustible and can be used as a fuel of internal combustion engines. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII. However, it has less than half the energy density of natural gas.

Unconventional oil is petroleum produced or extracted using techniques other than the conventional method. Industry and governments across the globe are investing in unconventional oil sources due to the increasing scarcity of conventional oil reserves. Unconventional oil and gas have already made a dent in international energy linkages by reducing US energy import dependency.

The Fischer–Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen or water gas into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch at the Kaiser-Wilhelm-Institut für Kohlenforschung in Mülheim an der Ruhr, Germany, in 1925.

Coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), natural gas (CH4), and water vapour (H2O)—from coal and water, air and/or oxygen.

Substitute natural gas (SNG), or synthetic natural gas, is a fuel gas (predominantly methane, CH4) that can be produced from fossil fuels such as lignite coal, oil shale, or from biofuels (when it is named bio-SNG) or using electricity with power-to-gas systems.

Shale oil is an unconventional oil produced from oil shale rock fragments by pyrolysis, hydrogenation, or thermal dissolution. These processes convert the organic matter within the rock (kerogen) into synthetic oil and gas. The resulting oil can be used immediately as a fuel or upgraded to meet refinery feedstock specifications by adding hydrogen and removing impurities such as sulfur and nitrogen. The refined products can be used for the same purposes as those derived from crude oil.

Coal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "Coal to X" or "Carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "Coal to Liquid Fuels" (CTL).

Synthetic fuel Liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

Bergius process

The Bergius process is a method of production of liquid hydrocarbons for use as synthetic fuel by hydrogenation of high-volatile bituminous coal at high temperature and pressure. It was first developed by Friedrich Bergius in 1913. In 1931 Bergius was awarded the Nobel Prize in Chemistry for his development of high pressure chemistry.

Underground coal gasification (UCG) is an industrial process which converts coal into product gas. UCG is an in-situ gasification process, carried out in non-mined coal seams using injection of oxidants and steam. The product gas is brought to the surface through production wells drilled from the surface.

Karrick process

The Karrick process is a low-temperature carbonization (LTC) and pyrolysis process of carbonaceous materials. Although primarily meant for coal carbonization, it also could be used for processing of oil shale, lignite or any carbonaceous materials. These are heated at 450 °C (800 °F) to 700 °C (1,300 °F) in the absence of air to distill out synthetic fuels–unconventional oil and syngas. It could be used for a coal liquefaction as also for a semi-coke production. The process was the work of oil shale technologist Lewis Cass Karrick at the United States Bureau of Mines in the 1920s.

The Synthetic Fuels Corporation was a U.S. government-funded corporation established in 1980 by the Energy Security Act (ESA) to create a financial bridge for the development and construction of commercial synthetic fuel manufacturing plants that would produce alternatives to imported fossil fuels. With a seven-member board of directors, the corporation received $20 billion in initial funding to be used in joint ventures with private firms, not only to construct plants, but also to help finance coal mines or transportation facilities. The SFC also researched and promoted the use of alcohol fuels, solar energy, and the production of fuel from urban waste. Over its 6-year existence, the SFC only spent approximately $960 million to fund four synthetic fuels projects, none of which survive today. The corporation was abolished in April 1986.

Oil shale industry

The oil shale industry is an industry of mining and processing of oil shale—a fine-grained sedimentary rock, containing significant amounts of kerogen, from which liquid hydrocarbons can be manufactured. The industry has developed in Brazil, China, Estonia and to some extent in Germany and Russia. Several other countries are currently conducting research on their oil shale reserves and production methods to improve efficiency and recovery. Estonia accounted for about 70% of the world's oil shale production in a study published in 2005.

Shale oil extraction Process for extracting oil from oil shale

Shale oil extraction is an industrial process for unconventional oil production. This process converts kerogen in oil shale into shale oil by pyrolysis, hydrogenation, or thermal dissolution. The resultant shale oil is used as fuel oil or upgraded to meet refinery feedstock specifications by adding hydrogen and removing sulfur and nitrogen impurities.

History of the oil shale industry

The history of the oil shale industry started in ancient times. The modern industrial use of oil shale for oil extraction dates to the mid-19th century and started growing just before World War I because of the mass production of automobiles and trucks and the supposed shortage of gasoline for transportation needs. Between the World Wars oil shale projects were begun in several countries.

In the United States, synthetic fuels are of increasing importance due to the price of crude oil, and geopolitical and economic considerations.

The Nevada–Texas–Utah retort process was an above-ground shale oil extraction technology to produce shale oil, a type of synthetic crude oil. It heated oil shale in a sealed vessel (retort) causing its decomposition into shale oil, oil shale gas and spent residue. The process was developed in the 1920s and used for shale oil production in the United States and in Australia. The process was simple to operate; however, it was ceased from the operation because of a small capacity and labor extensiveness.

Linc Energy

Linc Energy was an Australian energy company specialized on a coal-based synthetic fuel production as also on a conventional oil and gas production. It was engaged in development and commercialization of proprietary underground coal gasification technology. Produced gas was used for production of synthetic fuel through gas-to-liquid technology, and has been planned also to be used for power generation. The company had its headquarters in Brisbane, Queensland.

The history of the oil shale industry in the United States goes back to the 1850s; it dates back farther as a major enterprise than the petroleum industry. But although the United States contains the world's largest known resource of oil shale, the US has not been a significant producer of shale oil since 1861. There were three major past attempts to establish an American oil shale industry: the 1850s; in the years during and after World War I; and in the 1970s and early 1980s. Each time, the oil shale industry failed because of competition from cheaper petroleum.

References