T790M

Last updated

T790M, also known as Thr790Met, is a gatekeeper mutation of the epidermal growth factor receptor (EGFR). The mutation substitutes a threonine (T) with a methionine (M) at position 790 of exon 20, [1] affecting the ATP binding pocket of the EGFR kinase domain. Threonine is a small polar amino acid; methionine is a larger nonpolar amino acid. Rather than directly blocking inhibitor binding to the active site, T790M increases the affinity for ATP so that the inhibitors are outcompeted; irreversible covalent inhibitors such as neratinib can overcome this resistance. [2] [3]

Clinical

Over 50% of acquired resistance to EGFR tyrosine kinase inhibitors (TKI) is caused by a mutation in the ATP binding pocket of the EGFR kinase domain involving substitution of a small polar threonine residue with a large nonpolar methionine residue, T790M. [4] [5]

In November 2015, the US FDA granted accelerated approval to osimertinib (Tagrisso) for the treatment of patients with metastatic epidermal growth factor receptor (EGFR) T790M mutation-positive non-small cell lung cancer (NSCLC), as detected by an FDA-approved test, which progressed on or after EGFR TKI therapy. [6] [7]

Related Research Articles

<span class="mw-page-title-main">Tyrosine kinase</span> Class hi residues

A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.

<span class="mw-page-title-main">Gefitinib</span> Drug used in fighting breast, lung, and other cancers

Gefitinib, sold under the brand name Iressa, is a medication used for certain breast, lung and other cancers. Gefitinib is an EGFR inhibitor, like erlotinib, which interrupts signaling through the epidermal growth factor receptor (EGFR) in target cells. Therefore, it is only effective in cancers with mutated and overactive EGFR, but resistances to gefitinib can arise through other mutations. It is marketed by AstraZeneca and Teva.

<span class="mw-page-title-main">Epidermal growth factor receptor</span> Transmembrane protein

The epidermal growth factor receptor is a transmembrane protein that is a receptor for members of the epidermal growth factor family of extracellular protein ligands.

Quinazoline is an organic compound with the formula C8H6N2. It is an aromatic heterocycle with a bicyclic structure consisting of two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. It is a light yellow crystalline solid that is soluble in water. Also known as 1,3-diazanaphthalene, quinazoline received its name from being an aza derivative of quinoline. Though the parent quinazoline molecule is rarely mentioned by itself in technical literature, substituted derivatives have been synthesized for medicinal purposes such as antimalarial and anticancer agents. Quinazoline is a planar molecule. It is isomeric with the other diazanaphthalenes of the benzodiazine subgroup: cinnoline, quinoxaline, and phthalazine. Over 200 biologically active quinazoline and quinoline alkaloids are identified.

<span class="mw-page-title-main">Erlotinib</span> EGFR inhibitor for treatment of non-small-cell lung cancer

Erlotinib, sold under the brand name Tarceva among others, is a medication used to treat non-small cell lung cancer (NSCLC) and pancreatic cancer. Specifically it is used for NSCLC with mutations in the epidermal growth factor receptor (EGFR) — either an exon 19 deletion (del19) or exon 21 (L858R) substitution mutation — which has spread to other parts of the body. It is taken by mouth.

<span class="mw-page-title-main">HER2</span> Mammalian protein found in humans

Receptor tyrosine-protein kinase erbB-2 is a protein that in humans is encoded by the ERBB2 gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The human protein is also frequently referred to as HER2 or CD340.

The ErbB family of proteins contains four receptor tyrosine kinases, structurally related to the epidermal growth factor receptor (EGFR), its first discovered member. In humans, the family includes Her1, Her2, Her3 (ErbB3), and Her4 (ErbB4). The gene symbol, ErbB, is derived from the name of a viral oncogene to which these receptors are homologous: erythroblastic leukemia viral oncogene. Insufficient ErbB signaling in humans is associated with the development of neurodegenerative diseases, such as multiple sclerosis and Alzheimer's disease, while excessive ErbB signaling is associated with the development of a wide variety of types of solid tumor.

<span class="mw-page-title-main">ERBB3</span> Protein found in humans

Receptor tyrosine-protein kinase erbB-3, also known as HER3, is a membrane bound protein that in humans is encoded by the ERBB3 gene.

<span class="mw-page-title-main">Afatinib</span> Chemical compound

Afatinib, sold under the brand name Gilotrif among others, is a medication used to treat non-small cell lung carcinoma (NSCLC). It belongs to the tyrosine kinase inhibitor family of medications. It is taken by mouth.

<span class="mw-page-title-main">Neratinib</span> Chemical compound

Neratinib (INN), sold under the brand name Nerlynx, is a tyrosine kinase inhibitor anti-cancer medication used for the treatment of breast cancer.

<span class="mw-page-title-main">Combined small-cell lung carcinoma</span> Medical condition

Combined small cell lung carcinoma is a form of multiphasic lung cancer that is diagnosed by a pathologist when a malignant tumor, arising from transformed cells originating in lung tissue, contains a component of;small cell lung carcinoma (SCLC), admixed with one components of any histological variant of non-small cell lung carcinoma (NSCLC) in any relative proportion.

Targeted therapy of lung cancer refers to using agents specifically designed to selectively target molecular pathways responsible for, or that substantially drive, the malignant phenotype of lung cancer cells, and as a consequence of this (relative) selectivity, cause fewer toxic effects on normal cells.

<span class="mw-page-title-main">Tyrosine kinase inhibitor</span> Drug typically used in cancer treatment

A tyrosine kinase inhibitor (TKI) is a pharmaceutical drug that inhibits tyrosine kinases. Tyrosine kinases are enzymes responsible for the activation of many proteins by signal transduction cascades. The proteins are activated by adding a phosphate group to the protein (phosphorylation), a step that TKIs inhibit. TKIs are typically used as anticancer drugs. For example, they have substantially improved outcomes in chronic myelogenous leukemia. They have also been used to treat other diseases, such as idiopathic pulmonary fibrosis.

<span class="mw-page-title-main">ALK inhibitor</span>

ALK inhibitors are anti-cancer drugs that act on tumours with variations of anaplastic lymphoma kinase (ALK) such as an EML4-ALK translocation. They fall under the category of tyrosine kinase inhibitors, which work by inhibiting proteins involved in the abnormal growth of tumour cells. All the current approved ALK inhibitors function by binding to the ATP pocket of the abnormal ALK protein, blocking its access to energy and deactivating it. A majority of ALK-rearranged NSCLC harbour the EML4-ALK fusion, although as of 2020, over 92 fusion partners have been discovered in ALK+ NSCLC. For each fusion partner, there can be several fusion variants depending on the position the two genes were fused at, and this may have implications on the response of the tumour and prognosis of the patient.

<span class="mw-page-title-main">Brigatinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Brigatinib, sold under the brand name Alunbrig among others, is a small-molecule targeted cancer therapy being developed by Ariad Pharmaceuticals, Inc. Brigatinib acts as both an anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR) inhibitor.

<span class="mw-page-title-main">Icotinib</span> Chemical compound

Icotinib is a highly selective, first generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Icotinib is approved for use in China as first-line monotherapy in patients with non-small-cell lung cancer with somatic EGFR mutations.

<span class="mw-page-title-main">Osimertinib</span> Chemical compound, used as a medication to treat lung cancer

Osimertinib, sold under the brand name Tagrisso, is a medication used to treat non-small-cell lung carcinomas with specific mutations. It is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor.

<span class="mw-page-title-main">Tesevatinib</span> Chemical compound

Tesevatinib is an experimental drug proposed for use in kidney cancer and polycystic kidney disease. The drug was first developed by Exelixis, Inc. and was later acquired by Kadmon Corporation. Tesevatinib binds to and inhibits several tyrosine receptor kinases that play major roles in tumor cell proliferation and tumor vascularization, including epidermal growth factor receptor, epidermal growth factor receptor 2, vascular endothelial growth factor receptor (VEGFR), and ephrin B4 (EphB4).

<span class="mw-page-title-main">Olmutinib</span> Chemical compound

Olmutinib (INN) is an investigational anti-cancer drug. It acts by covalently bonding to a cysteine residue near the kinase domain of epidermal growth factor receptor (EGFR).

<span class="mw-page-title-main">Mobocertinib</span> Small molecule tyrosine kinase inhibitor


Mobocertinib, sold under the brand name Exkivity, is used for the treatment of non-small cell lung cancer.

References

  1. Tan CS, Gilligan D, Pacey S (2015). "Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer". Lancet Oncol. 16 (9): e447–59. doi:10.1016/S1470-2045(15)00246-6. PMID   26370354.
  2. Yun, CH; Mengwasser, KE; Toms, AV; Woo, MS; Greulich, H; Wong, KK; Meyerson, M; Eck, MJ (12 February 2008). "The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP". Proceedings of the National Academy of Sciences of the United States of America. 105 (6): 2070–5. Bibcode:2008PNAS..105.2070Y. doi: 10.1073/pnas.0709662105 . PMC   2538882 . PMID   18227510.
  3. Minami Y, Shimamura T, Shah K, LaFramboise T, Glatt KA, Liniker E, et al. (July 2007). "The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272". Oncogene. 26 (34): 5023–7. doi: 10.1038/sj.onc.1210292 . PMID   17311002.
  4. Remon J, Planchard D (2015). "AZD9291 in EGFR-mutant advanced non-small-cell lung cancer patients". Future Oncol. 11 (22): 3069–81. doi:10.2217/fon.15.250. PMID   26450446.
  5. Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, Chiang A, Yang G, Ouerfelli O, Kris MG, Ladanyi M, Miller VA, Pao W (2006). "Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors". Clin Cancer Res. 12 (1): 6494–501. doi: 10.1158/1078-0432.CCR-06-1570 . PMID   17085664.
  6. U.S. Food and Drug Administration. Hematology/Oncology (Cancer) Approvals & Safety Notifications.
  7. Inal C, Yilmaz E, Piperdi B, Perez-Soler R, Cheng H (2015). "Emerging treatment for advanced lung cancer with EGFR mutation". Expert Opin Emerg Drugs. 20 (4): 1–16. doi:10.1517/14728214.2015.1058778. PMID   26153235. S2CID   7050655.