TCX Technology

Last updated

TCX Technology is the brand name for a hydrocarbon-based ethanol production process developed and marketed by Celanese Corporation. Celanese researchers developed the TCX Technology in its Clear Lake City, Texas plant under the direction of its CEO to create a fuel that helps countries reduce their need to import oil and gas. [1] Celanese launched the TCX Technology in November 2010 [2] and plans to invest $700 million [1] to build one-to-two plants in China and one in Texas that will produce TCX-based ethanol. [3] Celanese expects to produce approximately 300 million gallons of TCX ethanol by 2016. [4]

Contents

Process

In the TCX process, natural gas or other hydrocarbons are first converted to acetic acid. Thereafter, acetic acid is hydrogenated (presumably obtained by methane reforming) to give ethanol; a supported platinum-tin catalyst for this purpose was patented by Celanese. [5] Starting from coal, it is gasified. Impurities such as mercury and cadmium are removed, before further reaction. [1]

Celanese claims to be able to produce hydrocarbon-based ethanol for a cost of $1.50 to $1.75 per gallon. [6]

Uses

TCX can function as a fuel additive to operate vehicles and in industrial-grade applications to manufacture paints, coatings, inks and pharmaceuticals. [6] It is intended for use in countries or regions wanting to lessen dependence on imported energy and with easy access to plentiful hydrocarbons. These include China, Middle East, Southeast Asia, South America, United States and other developing and growing countries.

Related Research Articles

Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic chemical compound. It is a simple alcohol with the chemical formula C2H6O. Its formula can be also written as CH
3
CH
2
OH or C
2
H
5
OH (an ethyl group linked to a hydroxyl group), and is often abbreviated as EtOH. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like odor and pungent taste. It is a psychoactive drug, recreational drug, and the active ingredient in alcoholic drinks.

Methanol Simplest alcohol

Methanol, also known as methyl alcohol or methyl hydrate, amongst other names, is a chemical and the simplest alcohol, with the formula CH3OH (a methyl group linked to a hydroxyl group, often abbreviated MeOH). It is a light, volatile, colourless, flammable liquid with a distinctive alcoholic odour similar to that of ethanol (potable alcohol). A polar solvent, methanol acquired the name wood alcohol because it was once produced chiefly by the destructive distillation of wood. Today, methanol is mainly produced industrially by hydrogenation of carbon monoxide.

Propane Chemical compound, commonly used as a fuel

Propane is a three-carbon alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used as a fuel in domestic and industrial applications and in low-emissions public transportation. Discovered in 1857 by the French chemist Marcellin Berthelot, it became commercially available in the US by 1911. Propane is one of a group of liquefied petroleum gases (LP gases). The others include butane, propylene, butadiene, butylene, isobutylene, and mixtures thereof. Propane has a lower energy density but burns more cleanly than gasoline and coal.

Celanese Corporation, formerly known as Hoechst Celanese, is a Fortune 500 global technology and specialty materials company headquartered in Irving, Texas, United States. The company is the world’s leading producer of acetic acid, with the company’s total output, which currently stands at 1.95 million tonnes per year, representing approximately 25% of global production. Celanese is also the world's largest producer of vinyl acetate monomer (VAM).

Ethanol fuel One type of biofuel

Ethanol fuel is ethyl alcohol, the same type of alcohol found in alcoholic beverages, used as fuel. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. The first production car running entirely on ethanol was the Fiat 147, introduced in 1978 in Brazil by Fiat. Ethanol is commonly made from biomass such as corn or sugarcane. World ethanol production for transport fuel tripled between 2000 and 2007 from 17×109 liters (4.5×109 U.S. gal; 3.7×109 imp gal) to more than 52×109 liters (1.4×1010 U.S. gal; 1.1×1010 imp gal). From 2007 to 2008, the share of ethanol in global gasoline type fuel use increased from 3.7% to 5.4%. In 2011 worldwide ethanol fuel production reached 8.46×1010 liters (2.23×1010 U.S. gal; 1.86×1010 imp gal) with the United States of America and Brazil being the top producers, accounting for 62.2% and 25% of global production, respectively. US ethanol production reached 57.54×109 liters (1.520×1010 U.S. gal; 1.266×1010 imp gal) in 2017–04.

Methanol fuel is an alternative biofuel for internal combustion and other engines, either in combination with gasoline or independently. Methanol (CH3OH) is less expensive to produce sustainably than ethanol fuel, although it is generally more toxic and has lower energy density. For optimizing engine performance and fuel availability, however, a blend of ethanol, methanol and petroleum is likely to be preferable to using any of these alone. Methanol (a methyl group linked to a hydroxyl group) may be made from hydrocarbon or renewable resources, in particular natural gas and biomass respectively. It can also be synthesized from CO2 (carbon dioxide) and hydrogen. Methanol fuel is currently used by racing cars in many countries but has not seen widespread use otherwise.

The Fischer–Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen or water gas into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch at the Kaiser-Wilhelm-Institut für Kohlenforschung in Mülheim an der Ruhr, Germany, in 1925.

Cellulosic ethanol is ethanol produced from cellulose rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a biofuel. The carbon dioxide that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is burned, so cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels.

Coal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "Coal to X" or "Carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "Coal to Liquid Fuels" (CTL).

Synthetic fuel Liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

Bergius process

The Bergius process is a method of production of liquid hydrocarbons for use as synthetic fuel by hydrogenation of high-volatile bituminous coal at high temperature and pressure. It was first developed by Friedrich Bergius in 1913. In 1931 Bergius was awarded the Nobel Prize in Chemistry for his development of high pressure chemistry.

Bioconversion of biomass to mixed alcohol fuels

The bioconversion of biomass to mixed alcohol fuels can be accomplished using the MixAlco process. Through bioconversion of biomass to a mixed alcohol fuel, more energy from the biomass will end up as liquid fuels than in converting biomass to ethanol by yeast fermentation.

Renewable fuels are fuels produced from renewable resources. Examples include: biofuels and Hydrogen fuel. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.

Natural-gas processing

Natural-gas processing is a range of industrial processes designed to purify raw natural gas by removing impurities, contaminants and higher molecular mass hydrocarbons to produce what is known as pipeline quality dry natural gas.

Mitigation of peak oil

The mitigation of peak oil is the attempt to delay the date and minimize the social and economic effects of peak oil by reducing the consumption of and reliance on petroleum. By reducing petroleum consumption, mitigation efforts seek to favorably change the shape of the Hubbert curve, which is the graph of real oil production over time predicted by Hubbert peak theory. The peak of this curve is known as peak oil, and by changing the shape of the curve, the timing of the peak in oil production is affected. An analysis by the author of the Hirsch report showed that while the shape of the oil production curve can be affected by mitigation efforts, mitigation efforts are also affected by the shape of Hubbert curve.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

Biofuels by region biofuel prevalence

The use of biofuels varies by region. The world leaders in biofuel development and use are Brazil, United States, France, Sweden and Germany.

Acetic acid Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH (also written as CH3CO2H, C2H4O2, or HC2H3O2). Vinegar is no less than 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water.

Gevo U.S. chemical company

Gevo, Inc. is a renewable chemicals and advanced biofuels company headquartered in unincorporated Douglas County, Colorado in the Denver-Aurora metropolitan area. Gevo is focused on sustainability, using the business model based on the Circular Economy to incorporate renewable energy from a range of sources, de-fossilization of its processes, regenerative agriculture, sequestration of carbon in the soil, systemwide efficiency, and conservation of resources to enhance all of its products. The company develops bio-based alternatives to petroleum-based products using a combination of biotechnology and classical chemistry. Gevo uses the GREET model from Argonne National Laboratory as a basis for its measure of sustainability with the goal of producing high-protein animal feed, corn-oil products, energy-dense liquid hydrocarbons, from every kernel of corn. Gevo is focused on converting sustainably grown raw materials, specifically no. 2 dent corn, into high-value protein and isobutanol, the primary building block for its renewable hydrocarbons, including sustainable aviation fuel, renewable gasoline, and renewable diesel. Gevo believes these fuels can be directly integrated on a “drop in” basis into existing fuel and chemical products. Gevo's investors include Burrill & Company, Khosla Ventures, Lanxess, Osage University Partners, Total, and Virgin Green Fund, among others.

Syngas to gasoline plus (STG+) is a thermochemical process to convert natural gas, other gaseous hydrocarbons or gasified biomass into drop-in fuels, such as gasoline, diesel fuel or jet fuel, and organic solvents.

References

  1. 1 2 3 Ernest Scheyder (Jun 15, 2011). "Celanese faces U.S. road block on ethanol". Reuters.
  2. Celanese News Release: Celanese Develops Advanced Technology for Production of Industrial-Use Ethanol Nov. 9, 2010
  3. Doris de Guzman and Stefan Baumgarten (10 January 2011). "News Focus: Celanese to enter China fuels market with coal-to-ethanol plants". ICIS Chemical Business.(subscription required)
  4. Christopher Helman (Apr 3, 2012). "Ethanol, Minus The Corn: It Could Fuel America If It Weren't Illegal". Forbes.
  5. USpatent 7863489,V. J. Johnston; L. Chen& B. F. Kimmichet al.,"Direct and Selective Production of Ethanol from Acetic Acid utilizing a Platinum/Tin Catalyst",issued 2011-01-04, assigned to Celanese International Corporation
  6. 1 2 "Market access will save US from $4 gasoline, says FuelChoiceNow". BiofuelsDigest. Sep 21, 2011.