Table of metaheuristics

Last updated

This is a chronological table of metaheuristic algorithms that only contains fundamental computational intelligence algorithms. Hybrid algorithms and multi-objective algorithms are not listed in the table below.

Contents

Categories

The table

NameAbbreviationMain categorySubcategoryYear publishedRef.
Simulated Annealing SATrajectory-based-1983 [1]
Tabu Search TSTrajectory-based-1989 [2]
Genetic Algorithm GAEvolutionary-based-1992 [3]
Evolutionary Algorithm EAEvolutionary-based-1994
Cultural Algorithm CA1994 [4]
Particle Swarm Optimization PSONature-inspiredSwarm-based1995 [5]
Differential EvaluationDEEvolutionary-based-1997 [6]
Local Search LS1997
Variable neighborhood search VNSTrajectory-based-1997 [7]
Guided Local SearchGLSTrajectory-based-1998 [8]
Clonal Selection AlgorithmCSAEvolutionary-based-2000 [9]
Harmony Search HSEvolutionary-based-2001 [10]
Memetic Algorithm MAEvolutionary-based-2002
Iterative Local SearchILSTrajectory-based-2003 [11]
Artificial Bee ColonyABCNature-inspiredBio-inspired2005 [12]
Ant Colony Optimization ACONature-inspiredBio-inspired2006 [13]
Glowworm Swarm Optimization GSONature-inspiredSwarm-based2006 [14]
Shuffled Frog Leaping AlgorithmSFLANature-inspiredBio-inspired2006 [15]
Invasive Weed OptimizationIWONature-inspiredPlant-based2006 [16]
Seeker Optimization AlgorithmSOANature-inspiredHuman-based2006 [17]
Imperialistic Competitive AlgorithmICANature-inspiredHuman-based2007 [18]
Central Force OptimizationCFO2007 [19]
Biogeography Based OptimizationBBONature-inspiredHuman-based2008 [20]
Firefly AlgorithmFANature-inspiredBio-inspired2008 [21]
Intelligent Water DropsIWDNature-inspiredSwarm-based2008 [22]
Monkey AlgorithmMANature-inspiredBio-inspired2008 [23]
Cuckoo SearchCSNature-inspiredBio-inspired2009 [24]
Group Search OptimizerGSONature-inspiredSwarm-based2009 [25]
Key Cutting AlgorithmKCA2009 [26]
Hunting SearchHSNature-inspiredSwarm-based2009 [27]
Chemical Reaction OptimizationCRONature-inspiredPhysics/Chemistry-based2009 [28]
Bat AlgorithmBANature-inspiredBio-inspired2010 [29]
Charged System SearchCSSNature-inspiredPhysics/Chemistry-based2010 [30]
Eagle StrategyESNature-inspired2010
Fireworks AlgorithmFWA2010 [31]
Cuckoo Optimization AlgorithmCOANature-inspiredBio-inspired2011 [32]
Stochastic Diffusion SearchSDS2011
Teaching-Learning-Based OptimizationTLBONature-inspiredHuman-based2011 [33]
Bacterial Colony OptimizationBCO2012 [34]
Fruit Fly OptimizationFFO2012
Krill Herd AlgorithmKHANature-inspiredBio-inspired2012 [35]
Migrating Birds OptimizationMBONature-inspiredSwarm-based2012 [36]
Water Cycle AlgorithmWCA2012
Backtracking Search AlgorithmBSAEvolutionary-based-2013 [37]
Black Hole AlgorithmBHNature-inspiredPhysics/Chemistry-based2013 [38]
Dolphin EcholocationDENature-inspiredBio-inspired2013 [39]
Animal Migration OptimizationAMONature-inspiredSwarm-based2013 [40]
Keshtel AlgorithmKANature-inspired2014 [41]
SDA Optimization AlgorithmSDANature-inspiredBio-inspired2014 [42]
Artificial Root Foraging AlgorithmARFANature-inspiredPlant-based2014 [43]
Bumble Bees Mating OptimizationBBMO2014
Chicken Swarm OptimizationCSONature-inspiredBio-inspired2014 [44]
Colliding Bodies OptimizationCBO2014 [45]
Coral Reefs Optimization AlgorithmCROA2014
Flower Pollination AlgorithmFPANature-inspiredPlant-based2014 [46]
Radial Movement OptimizationRMONature-inspiredSwarm-based2014 [47]
Spider Monkey OptimizationSMONature-inspiredBio-inspired2014 [48]
Soccer League CompetitionSLCNature-inspiredHuman-based2014 [49]
Artificial Algae AlgorithmAAA2015 [50]
Adaptive Dimensional SearchADS2015
Alienated Ant AlgorithmAAA2015
Artificial Fish Swarm AlgorithmAFSANature-inspired2015
Bottlenose Dolphin OptimizationBDONature-inspired2015 [51]
Cricket AlgorithmCA2015 [52]
Elephant Search AlgorithmESANature-inspiredBio-inspired2015 [53]
Grey Wolf OptimizerGWONature-inspiredBio-inspired2015 [54]
Jaguar AlgorithmJANature-inspiredBio-inspired2015 [55]
Locust Swarm AlgorithmLSANature-inspiredSwarm-based2015 [56]
Moth-Flame OptimizationMFONature-inspiredBio-inspired2015 [57]
Stochastic Fractal SearchSFFEvolutionary-based-2015 [58]
Vortex Search AlgorithmVSANature-inspiredPhysics/Chemistry-based2015 [59]
Water Wave OptimizationWWANature-inspiredPhysics/Chemistry-based2015 [60]
Ant Lion OptimizerALONature-inspiredBio-inspired2015 [61]
African Buffalo OptimizationABONature-inspiredSwarm-based2015 [62]
Lightning Search AlgorithmLSANature-inspiredPhysics/Chemistry-based2015 [63]
Across Neighborhood SearchANSEvolutionary-based-2016 [64]
Crow Search AlgorithmCSANature-inspiredBio-inspired2016 [65]
Electromagnetic Field OptimizationEFONature-inspiredPhysics/Chemistry-based2016 [66]
Joint Operations AlgorithmJOANature-inspiredSwarm-based2016 [67]
Lion Optimization AlgorithmLOANature-inspiredBio-inspired2016 [68]
Sine Cosine AlgorithmSCANature-inspiredPhysics/Chemistry-based2016 [69]
Virus Colony SearchVCSNature-inspiredBio-inspired2016 [70]
Whale Optimization AlgorithmWOANature-inspiredBio-inspired2016 [71]
Red Deer AlgorithmRDANature-inspiredBio-inspired2016 [72]
Phototropic Optimization AlgorithmPOANature-inspiredPlant-based2018 [73]
Coyote Optimization AlgorithmCOANature-inspiredSwarm-based2018 [74]
Owl Search AlgorithmOSANature-inspiredBio-inspired2018 [75]
Squirrel Search AlgorithmSSANature-inspiredBio-inspired2018 [76]
Social Engineering OptimizerSEONature-inspiredHuman-based2018 [77]
Emperor Penguin OptimizerEPONature-inspiredBio-inspired2018 [78]
Socio Evolution and Learning OptimizationSELONature-inspiredHuman-based2018 [79]
Future Search AlgorithmFSANature-inspiredHuman-based2019 [80]
Emperor Penguins ColonyEPCNature-inspiredSwarm-based2019 [81]
Thermal Exchange OptimizationTEONature-inspiredPhysics/Chemistry-based2019 [82]
Harris Hawks OptimizationHHONature-inspiredBio-inspired2019 [83]
Political OptimizerPONature-inspiredHuman-based2020 [84]
Heap-Based OptimizerHBONature-inspiredHuman-based2020 [85]
Color Harmony AlgorithmCHAArt-inspiredColor-based2020 [86]
Stochastic Paint OptimizerSPOArt-inspiredColor-based2020 [87]
Mayfly Optimization AlgorithmMOANature-inspiredBio-inspired2020 [88]
Giza Pyramids ConstructionGPCAncient-inspired-2020 [89]
Fire Hawk OptimizerFHONature-inspiredBio-inspired2022 [90]
Flying Fox Optimization AlgorithmFFONature-inspiredBio-inspired2023 [91]
Waterwheel Plant AlgorithmWWPANature-inspiredPlant-based2023 [92]
Energy Valley OptimizerEVONature-inspiredPhysics/Chemistry-based2023 [93]
Special Forces AlgorithmSFANature-inspiredSwarm-based2023 [94]
Squid Game OptimizerSGONature-inspiredHuman-based2023 [95]
Snow Ablation OptimizerSAONature-inspiredPhysics/Chemistry-based2023 [96]
Spider Wasp OptimizationSWONature-inspiredBio-inspired2023 [97]
Dujiangyan Irrigation SystemDISOAncient-inspired-2023 [98]
Great Wall Construction AlgorithmGWCAAncient-inspired-2023 [99]
Puma OptimizerPONature-inspiredBio-inspired2024 [100]
Walrus OptimizerWONature-inspiredBio-inspired2024 [101]

Related Research Articles

<span class="mw-page-title-main">Genetic algorithm</span> Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.

In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.

<span class="mw-page-title-main">Evolutionary computation</span> Trial and error problem solvers with a metaheuristic or stochastic optimization character

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

<span class="mw-page-title-main">Particle swarm optimization</span> Iterative simulation method

In computational science, particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formulae over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions.

<span class="mw-page-title-main">Ant colony optimization algorithms</span> Optimization algorithm

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

<span class="mw-page-title-main">Swarm intelligence</span> Collective behavior of decentralized, self-organized systems

Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems.

In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems.

In computer programming, genetic representation is a way of presenting solutions/individuals in evolutionary computation methods. The term encompasses both the concrete data structures and data types used to realize the genetic material of the candidate solutions in the form of a genome, and the relationships between search space and problem space. In the simplest case, the search space corresponds to the problem space. The choice of problem representation is tied to the choice of genetic operators, both of which have a decisive effect on the efficiency of the optimization. Genetic representation can encode appearance, behavior, physical qualities of individuals. Difference in genetic representations is one of the major criteria drawing a line between known classes of evolutionary computation.

A memetic algorithm (MA) in computer science and operations research, is an extension of the traditional genetic algorithm (GA) or more general evolutionary algorithm (EA). It may provide a sufficiently good solution to an optimization problem. It uses a suitable heuristic or local search technique to improve the quality of solutions generated by the EA and to reduce the likelihood of premature convergence.

Search-based software engineering (SBSE) applies metaheuristic search techniques such as genetic algorithms, simulated annealing and tabu search to software engineering problems. Many activities in software engineering can be stated as optimization problems. Optimization techniques of operations research such as linear programming or dynamic programming are often impractical for large scale software engineering problems because of their computational complexity or their assumptions on the problem structure. Researchers and practitioners use metaheuristic search techniques, which impose little assumptions on the problem structure, to find near-optimal or "good-enough" solutions.

A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.

<span class="mw-page-title-main">Fred W. Glover</span> American computer scientist

Fred Glover is Chief Scientific Officer of Entanglement, Inc., USA, in charge of algorithmic design and strategic planning for applications of combinatorial optimization in quantum computing. He also holds the title of Distinguished University Professor, Emeritus, at the University of Colorado, Boulder, associated with the College of Engineering and Applied Science and the Leeds School of Business. He is known for his innovations in the area of metaheuristics including the computer-based optimization methodology of Tabu search an adaptive memory programming algorithm for mathematical optimization, and the associated evolutionary Scatter Search and Path Relinking algorithms.

Design Automation usually refers to electronic design automation, or Design Automation which is a Product Configurator. Extending Computer-Aided Design (CAD), automated design and Computer-Automated Design (CAutoD) are more concerned with a broader range of applications, such as automotive engineering, civil engineering, composite material design, control engineering, dynamic system identification and optimization, financial systems, industrial equipment, mechatronic systems, steel construction, structural optimisation, and the invention of novel systems.

<span class="mw-page-title-main">Meta-optimization</span>

In numerical optimization, meta-optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm.

In computer science, imperialist competitive algorithms are a type of computational method used to solve optimization problems of different types. Like most of the methods in the area of evolutionary computation, ICA does not need the gradient of the function in its optimization process. From a specific point of view, ICA can be thought of as the social counterpart of genetic algorithms (GAs). ICA is the mathematical model and the computer simulation of human social evolution, while GAs are based on the biological evolution of species.

The brain storm optimization algorithm is a heuristic algorithm that focuses on solving multi-modal problems, such as radio antennas design worked on by Yahya Rahmat-Samii, inspired by the brainstorming process, proposed by Dr. Yuhui Shi.

Lion algorithm (LA) is one among the bio-inspired (or) nature-inspired optimization algorithms (or) that are mainly based on meta-heuristic principles. It was first introduced by B. R. Rajakumar in 2012 in the name, Lion’s Algorithm.. It was further extended in 2014 to solve the system identification problem. This version was referred as LA, which has been applied by many researchers for their optimization problems.

<span class="mw-page-title-main">Maurice Clerc (mathematician)</span> French mathematician

Maurice Clerc is a French mathematician.

A large-scale capacitated arc routing problem (LSCARP) is a variant of the capacitated arc routing problem that covers 300 or more edges to model complex arc routing problems at large scales.

References

  1. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. (1983-05-13). "Optimization by Simulated Annealing". Science. 220 (4598): 671–680. Bibcode:1983Sci...220..671K. doi:10.1126/science.220.4598.671. ISSN   0036-8075. PMID   17813860. S2CID   205939.
  2. Glover, Fred (1989-08-01). "Tabu Search—Part I". ORSA Journal on Computing. 1 (3): 190–206. doi:10.1287/ijoc.1.3.190. ISSN   0899-1499.
  3. Holland, John H. (1992). Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence (1st MIT Press ed.). Cambridge, Mass.: MIT Press. ISBN   0-585-03844-9. OCLC   42854623.
  4. Sebald, Anthony V.; Fogel, Lawrence J. (1994-09-01). "Evolutionary Programming". Proceedings of the Third Annual Conference. WORLD SCIENTIFIC. pp. 1–386. doi:10.1142/9789814534116. ISBN   978-981-02-1810-2.
  5. Kennedy, J.; Eberhart, R. (November 1995). "Particle swarm optimization". Proceedings of ICNN'95 - International Conference on Neural Networks. Vol. 4. pp. 1942–1948 vol.4. doi:10.1109/ICNN.1995.488968. ISBN   0-7803-2768-3. S2CID   7367791.
  6. Storn, Rainer; Price, Kenneth (1997-12-01). "Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces". Journal of Global Optimization. 11 (4): 341–359. Bibcode:1997JGOpt..11..341S. doi:10.1023/A:1008202821328. ISSN   1573-2916. S2CID   5297867.
  7. Mladenović, N.; Hansen, P. (1997-11-01). "Variable neighborhood search". Computers & Operations Research. 24 (11): 1097–1100. doi:10.1016/S0305-0548(97)00031-2. ISSN   0305-0548.
  8. Balas, Egon; Vazacopoulos, Alkis (1998-02-01). "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling". Management Science. 44 (2): 262–275. doi:10.1287/mnsc.44.2.262. ISSN   0025-1909.
  9. de Castro, L.N.; Von Zuben, F.J. (June 2002). "Learning and optimization using the clonal selection principle". IEEE Transactions on Evolutionary Computation. 6 (3): 239–251. doi:10.1109/TEVC.2002.1011539. ISSN   1941-0026.
  10. Zong Woo Geem; Joong Hoon Kim; Loganathan, G.V. (February 2001). "A New Heuristic Optimization Algorithm: Harmony Search". Simulation. 76 (2): 60–68. doi:10.1177/003754970107600201. ISSN   0037-5497. S2CID   20076748.
  11. Lourenço, Helena R.; Martin, Olivier C.; Stützle, Thomas (2003). "Iterated Local Search". In Glover, Fred; Kochenberger, Gary A. (eds.). Handbook of Metaheuristics. International Series in Operations Research & Management Science. Boston, MA: Springer US. pp. 320–353. doi:10.1007/0-306-48056-5_11. ISBN   978-0-306-48056-0. S2CID   198489826.
  12. Karaboga, Dervis; Basturk, Bahriye (2007-11-01). "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm". Journal of Global Optimization. 39 (3): 459–471. doi:10.1007/s10898-007-9149-x. ISSN   1573-2916. S2CID   8540283.
  13. Dorigo, Marco; Birattari, Mauro; Stutzle, Thomas (November 2006). "Ant colony optimization". IEEE Computational Intelligence Magazine. 1 (4): 28–39. doi:10.1109/MCI.2006.329691. ISSN   1556-6048.
  14. Krishnanand, K.N.; Ghose, D. (June 2005). "Detection of multiple source locations using a glowworm metaphor with applications to collective robotics". Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. pp. 84–91. doi:10.1109/SIS.2005.1501606. ISBN   0-7803-8916-6. S2CID   17016908.
  15. Eusuff, Muzaffar; Lansey, Kevin; Pasha, Fayzul (2006-03-01). "Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization". Engineering Optimization. 38 (2): 129–154. doi:10.1080/03052150500384759. ISSN   0305-215X. S2CID   18117277.
  16. Mehrabian, A. R.; Lucas, C. (2006-12-01). "A novel numerical optimization algorithm inspired from weed colonization". Ecological Informatics. 1 (4): 355–366. Bibcode:2006EcInf...1..355M. doi:10.1016/j.ecoinf.2006.07.003. ISSN   1574-9541.
  17. Dai, Chaohua; Zhu, Yunfang; Chen, Weirong (2007). "Seeker Optimization Algorithm". In Wang, Yuping; Cheung, Yiu-ming; Liu, Hailin (eds.). Computational Intelligence and Security. Lecture Notes in Computer Science. Vol. 4456. Berlin, Heidelberg: Springer. pp. 167–176. doi:10.1007/978-3-540-74377-4_18. ISBN   978-3-540-74377-4. S2CID   15135923.
  18. Atashpaz-Gargari, Esmaeil; Lucas, Caro (September 2007). "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition". 2007 IEEE Congress on Evolutionary Computation. pp. 4661–4667. doi:10.1109/CEC.2007.4425083. ISBN   978-1-4244-1339-3. S2CID   2736579.
  19. Formato, Richard (2007). "Central Force Optimization: a New Metaheuristic with Applications in Applied Electromagnetics". Progress in Electromagnetics Research. 77: 425–491. doi: 10.2528/PIER07082403 . ISSN   1070-4698.
  20. Simon, Dan (December 2008). "Biogeography-Based Optimization". IEEE Transactions on Evolutionary Computation. 12 (6): 702–713. doi:10.1109/TEVC.2008.919004. ISSN   1941-0026. S2CID   8319014.
  21. Yang, Xin-She (2009). "Firefly Algorithms for Multimodal Optimization". In Watanabe, Osamu; Zeugmann, Thomas (eds.). Stochastic Algorithms: Foundations and Applications. Lecture Notes in Computer Science. Vol. 5792. Berlin, Heidelberg: Springer. pp. 169–178. doi:10.1007/978-3-642-04944-6_14. ISBN   978-3-642-04944-6. S2CID   34975975.
  22. Hosseini, Hamed Shah (2009). "The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm". International Journal of Bio-Inspired Computation. 1 (1/2): 71. doi:10.1504/IJBIC.2009.022775. ISSN   1758-0366.
  23. Zhao R Q, Tang W S. Monkey algorithm for global numerical optimization. Journal of Uncertain Systems. 2008,2 (3):164-175.
  24. Yang, Xin-She; Suash Deb (December 2009). "Cuckoo Search via Lévy flights". 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). pp. 210–214. doi:10.1109/NABIC.2009.5393690. ISBN   978-1-4244-5053-4. S2CID   206491725.
  25. He, S.; Wu, Q. H.; Saunders, J. R. (October 2009). "Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior". IEEE Transactions on Evolutionary Computation. 13 (5): 973–990. doi:10.1109/TEVC.2009.2011992. ISSN   1941-0026. S2CID   38375639.
  26. Qin, Jing (November 2009). "A new optimization algorithm and its application Key cutting algorithm". 2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). pp. 1537–1541. doi:10.1109/GSIS.2009.5408158. ISBN   978-1-4244-4914-9. S2CID   27652599.
  27. Oftadeh, R.; Mahjoob, M. J.; Shariatpanahi, M. (2010-10-01). "A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search". Computers & Mathematics with Applications. 60 (7): 2087–2098. doi:10.1016/j.camwa.2010.07.049. ISSN   0898-1221.
  28. Lam, Albert Y. S.; Li, Victor O. K. (June 2010). "Chemical-Reaction-Inspired Metaheuristic for Optimization". IEEE Transactions on Evolutionary Computation. 14 (3): 381–399. doi:10.1109/TEVC.2009.2033580. hdl: 10722/130634 . ISSN   1941-0026. S2CID   2281747.
  29. Yang, Xin-She (2010). "A New Metaheuristic Bat-Inspired Algorithm". In González, Juan R.; Pelta, David Alejandro; Cruz, Carlos; Terrazas, Germán (eds.). Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence. Vol. 284. Berlin, Heidelberg: Springer. pp. 65–74. doi:10.1007/978-3-642-12538-6_6. ISBN   978-3-642-12538-6. S2CID   14494281.
  30. Kaveh, A.; Talatahari, S. (2010-09-01). "A novel heuristic optimization method: charged system search". Acta Mechanica. 213 (3): 267–289. doi:10.1007/s00707-009-0270-4. ISSN   1619-6937. S2CID   119512430.
  31. Tan, Ying; Zhu, Yuanchun (2010). "Fireworks Algorithm for Optimization". In Tan, Ying; Shi, Yuhui; Tan, Kay Chen (eds.). Advances in Swarm Intelligence. Lecture Notes in Computer Science. Vol. 6145. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 355–364. doi:10.1007/978-3-642-13495-1_44. ISBN   978-3-642-13494-4.
  32. Rajabioun, Ramin (2011-12-01). "Cuckoo Optimization Algorithm". Applied Soft Computing. 11 (8): 5508–5518. doi:10.1016/j.asoc.2011.05.008. ISSN   1568-4946.
  33. Rao, R. V.; Savsani, V. J.; Vakharia, D. P. (2011-03-01). "Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems". Computer-Aided Design. 43 (3): 303–315. doi:10.1016/j.cad.2010.12.015. ISSN   0010-4485.
  34. Niu, Ben; Wang, Hong (2012-11-27). "Bacterial Colony Optimization". Discrete Dynamics in Nature and Society. 2012: 1–28. doi: 10.1155/2012/698057 .
  35. Gandomi, Amir Hossein; Alavi, Amir Hossein (2012-12-01). "Krill herd: A new bio-inspired optimization algorithm". Communications in Nonlinear Science and Numerical Simulation. 17 (12): 4831–4845. Bibcode:2012CNSNS..17.4831G. doi:10.1016/j.cnsns.2012.05.010. ISSN   1007-5704.
  36. Duman, Ekrem; Uysal, Mitat; Alkaya, Ali Fuat (2012-12-25). "Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem". Information Sciences. 217: 65–77. doi:10.1016/j.ins.2012.06.032. ISSN   0020-0255.
  37. Civicioglu, Pinar (2013-04-01). "Backtracking Search Optimization Algorithm for numerical optimization problems". Applied Mathematics and Computation. 219 (15): 8121–8144. doi:10.1016/j.amc.2013.02.017. ISSN   0096-3003.
  38. Hatamlou, Abdolreza (2013-02-10). "Black hole: A new heuristic optimization approach for data clustering". Information Sciences. Including Special Section on New Trends in Ambient Intelligence and Bio-inspired Systems. 222: 175–184. doi:10.1016/j.ins.2012.08.023. ISSN   0020-0255.
  39. Kaveh, A.; Farhoudi, N. (2013-05-01). "A new optimization method: Dolphin echolocation". Advances in Engineering Software. 59: 53–70. doi:10.1016/j.advengsoft.2013.03.004. ISSN   0965-9978.
  40. Li, Xiangtao; Zhang, Jie; Yin, Minghao (2014-06-01). "Animal migration optimization: an optimization algorithm inspired by animal migration behavior". Neural Computing and Applications. 24 (7): 1867–1877. doi:10.1007/s00521-013-1433-8. ISSN   1433-3058. S2CID   4362350.
  41. Chandra S S, Vinod (2014-03-01). "Solving the integrated scheduling of production and rail transportation problem by Keshtel algorithm". Applied Soft Computing. 25 (3): 184–203. doi:10.1016/j.asoc.2014.09.034. ISSN   1568-4946.
  42. Chandra, Vinod (2014-03-01). "Smell Detection Agent Based Optimization Algorithm". J. Inst. Eng. India Ser. B. 97 (3): 431–436. doi: 10.1007/s40031-014-0182-0 .
  43. Ma, Lianbo; Hu, Kunyuan; Zhu, Yunlong; Chen, Hanning; He, Maowei (2014). "A Novel Plant Root Foraging Algorithm for Image Segmentation Problems". Mathematical Problems in Engineering. 2014: 1–16. doi: 10.1155/2014/471209 . ISSN   1024-123X.
  44. Meng, Xianbing; Liu, Yu; Gao, Xiaozhi; Zhang, Hengzhen (2014). "A New Bio-inspired Algorithm: Chicken Swarm Optimization". In Tan, Ying; Shi, Yuhui; Coello, Carlos A. Coello (eds.). Advances in Swarm Intelligence. Lecture Notes in Computer Science. Vol. 8794. Cham: Springer International Publishing. pp. 86–94. doi:10.1007/978-3-319-11857-4_10. ISBN   978-3-319-11857-4.
  45. Kaveh, A.; Mahdavi, V. R. (2014-07-15). "Colliding bodies optimization: A novel meta-heuristic method". Computers & Structures. 139: 18–27. doi:10.1016/j.compstruc.2014.04.005. ISSN   0045-7949.
  46. Yang, Xin-She (2012). "Flower Pollination Algorithm for Global Optimization". In Durand-Lose, Jérôme; Jonoska, Nataša (eds.). Unconventional Computation and Natural Computation. Lecture Notes in Computer Science. Vol. 7445. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 240–249. arXiv: 1312.5673 . doi:10.1007/978-3-642-32894-7_27. ISBN   978-3-642-32893-0. S2CID   8021636.
  47. Rahmani, Rasoul; Yusof, Rubiyah (2014-12-01). "A new simple, fast and efficient algorithm for global optimization over continuous search-space problems: Radial Movement Optimization". Applied Mathematics and Computation. 248: 287–300. doi:10.1016/j.amc.2014.09.102. ISSN   0096-3003.
  48. Bansal, Jagdish Chand; Sharma, Harish; Jadon, Shimpi Singh; Clerc, Maurice (2014-03-01). "Spider Monkey Optimization algorithm for numerical optimization". Memetic Computing. 6 (1): 31–47. doi:10.1007/s12293-013-0128-0. ISSN   1865-9292. S2CID   5714781.
  49. Moosavian, Naser; Kasaee Roodsari, Babak (2014-08-01). "Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks". Swarm and Evolutionary Computation. 17: 14–24. doi:10.1016/j.swevo.2014.02.002. ISSN   2210-6502.
  50. Uymaz, Sait Ali; Tezel, Gulay; Yel, Esra (2015-06-01). "Artificial algae algorithm (AAA) for nonlinear global optimization". Applied Soft Computing. 31: 153–171. doi:10.1016/j.asoc.2015.03.003. ISSN   1568-4946.
  51. Srivastava, Abhishek; Das, Dushmanta Kumar (2022-05-11). "A bottlenose dolphin optimizer: An application to solve dynamic emission economic dispatch problem in the microgrid". Knowledge-Based Systems. 243: 108455. doi:10.1016/j.knosys.2022.108455. ISSN   0950-7051. S2CID   247077277.
  52. Canayaz, Murat; Karci, Ali (2016-03-01). "Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems". Applied Intelligence. 44 (2): 362–376. doi:10.1007/s10489-015-0706-6. ISSN   1573-7497. S2CID   16194679.
  53. Deb, Suash; Fong, Simon; Tian, Zhonghuan (October 2015). "Elephant Search Algorithm for optimization problems". 2015 Tenth International Conference on Digital Information Management (ICDIM). pp. 249–255. doi:10.1109/ICDIM.2015.7381893. ISBN   978-1-4673-9152-8. S2CID   2460217.
  54. Mirjalili, Seyedali; Mirjalili, Seyed Mohammad; Lewis, Andrew (2014-03-01). "Grey Wolf Optimizer". Advances in Engineering Software. 69: 46–61. doi:10.1016/j.advengsoft.2013.12.007. hdl: 10072/66188 . ISSN   0965-9978. S2CID   15532140.
  55. Chen, Chin-Chi; Tsai, Yung-Che; Liu, I-I; Lai, Chia-Chun; Yeh, Yi-Ting; Kuo, Shu-Yu; Chou, Yao-Hsin (October 2015). "A Novel Metaheuristic: Jaguar Algorithm with Learning Behavior". 2015 IEEE International Conference on Systems, Man, and Cybernetics. pp. 1595–1600. doi:10.1109/SMC.2015.282. ISBN   978-1-4799-8697-2. S2CID   11932094.
  56. Cuevas, Erik; González, Adrián; Zaldívar, Daniel; Cisneros, Marco Pérez (2015). "An optimisation algorithm based on the behaviour of locust swarms". International Journal of Bio-Inspired Computation. 7 (6): 402. doi:10.1504/ijbic.2015.073178. ISSN   1758-0366.
  57. Mirjalili, Seyedali (2015-11-01). "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm". Knowledge-Based Systems. 89: 228–249. doi:10.1016/j.knosys.2015.07.006. ISSN   0950-7051.
  58. Salimi, Hamid (2015-02-01). "Stochastic Fractal Search: A powerful metaheuristic algorithm". Knowledge-Based Systems. 75: 1–18. doi:10.1016/j.knosys.2014.07.025. ISSN   0950-7051.
  59. Doğan, Berat; Ölmez, Tamer (2015-02-01). "A new metaheuristic for numerical function optimization: Vortex Search algorithm". Information Sciences. 293: 125–145. doi:10.1016/j.ins.2014.08.053. ISSN   0020-0255. S2CID   8464197.
  60. Zheng, Yu-Jun (2015-03-01). "Water wave optimization: A new nature-inspired metaheuristic". Computers & Operations Research. 55: 1–11. doi: 10.1016/j.cor.2014.10.008 . ISSN   0305-0548.
  61. Mirjalili, Seyedali (2015-05-01). "The Ant Lion Optimizer". Advances in Engineering Software. 83: 80–98. doi:10.1016/j.advengsoft.2015.01.010. ISSN   0965-9978.
  62. Odili, Julius Beneoluchi; Kahar, Mohd Nizam Mohmad; Anwar, Shahid (2015-01-01). "African Buffalo Optimization: A Swarm-Intelligence Technique". Procedia Computer Science. 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IEEE IRIS2015). 76: 443–448. doi: 10.1016/j.procs.2015.12.291 . ISSN   1877-0509.
  63. Shareef, Hussain; Ibrahim, Ahmad Asrul; Mutlag, Ammar Hussein (2015-11-01). "Lightning search algorithm". Applied Soft Computing. 36: 315–333. doi:10.1016/j.asoc.2015.07.028. ISSN   1568-4946.
  64. Wu, Guohua (2016-02-01). "Across neighborhood search for numerical optimization". Information Sciences. Special issue on Discovery Science. 329: 597–618. arXiv: 1401.3376 . doi:10.1016/j.ins.2015.09.051. ISSN   0020-0255. S2CID   25844630.
  65. Askarzadeh, Alireza (2016-06-01). "A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm". Computers & Structures. 169: 1–12. doi:10.1016/j.compstruc.2016.03.001. ISSN   0045-7949.
  66. Abedinpourshotorban, Hosein; Mariyam Shamsuddin, Siti; Beheshti, Zahra; Jawawi, Dayang N. A. (2016-02-01). "Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm". Swarm and Evolutionary Computation. 26: 8–22. doi:10.1016/j.swevo.2015.07.002. ISSN   2210-6502.
  67. Sun, Gaoji; Zhao, Ruiqing; Lan, Yanfei (2016-01-01). "Joint operations algorithm for large-scale global optimization". Applied Soft Computing. 38: 1025–1039. doi:10.1016/j.asoc.2015.10.047. ISSN   1568-4946.
  68. Yazdani, Maziar; Jolai, Fariborz (2016-01-01). "Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm". Journal of Computational Design and Engineering. 3 (1): 24–36. doi: 10.1016/j.jcde.2015.06.003 .
  69. Mirjalili, Seyedali (2016-03-15). "SCA: A Sine Cosine Algorithm for solving optimization problems". Knowledge-Based Systems. 96: 120–133. doi:10.1016/j.knosys.2015.12.022. ISSN   0950-7051.
  70. Li, Mu Dong; Zhao, Hui; Weng, Xing Wei; Han, Tong (2016-02-01). "A novel nature-inspired algorithm for optimization: Virus colony search". Advances in Engineering Software. 92: 65–88. doi:10.1016/j.advengsoft.2015.11.004. ISSN   0965-9978.
  71. Mirjalili, Seyedali; Lewis, Andrew (2016-05-01). "The Whale Optimization Algorithm". Advances in Engineering Software. 95: 51–67. doi:10.1016/j.advengsoft.2016.01.008. ISSN   0965-9978.
  72. Fathollahi-Fard, Amir Mohammad; Hajiaghaei-Keshteli, Mostafa; Tavakkoli-Moghaddam, Reza (2020-03-10). "Red deer algorithm (RDA): a new nature-inspired meta-heuristic". Soft Computing. 24 (19): 14637–14665. doi:10.1007/s00500-020-04812-z. ISSN   1433-7479. S2CID   215906392.
  73. Vinod, Chandra S S; Anand, Hareendran S (2021). "Phototropic algorithm for global optimisation problems". Applied Intelligence. 51 (8): 5965–5977. doi:10.1007/s10489-020-02105-4. S2CID   234211731.
  74. Pierezan, Juliano; Dos Santos Coelho, Leandro (July 2018). "Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems". 2018 IEEE Congress on Evolutionary Computation (CEC). pp. 1–8. doi:10.1109/CEC.2018.8477769. ISBN   978-1-5090-6017-7. S2CID   52932771.
  75. Jain, Mohit; Maurya, Shubham; Rani, Asha; Singh, Vijander (2018-03-22). Thampi, Sabu M.; El-Alfy, El-Sayed M.; Mitra, Sushmita; Trajkovic, Ljiljana (eds.). "Owl search algorithm: A novel nature-inspired heuristic paradigm for global optimization". Journal of Intelligent & Fuzzy Systems. 34 (3): 1573–1582. doi:10.3233/JIFS-169452.
  76. Jain, Mohit; Singh, Vijander; Rani, Asha (2019-02-01). "A novel nature-inspired algorithm for optimization: Squirrel search algorithm". Swarm and Evolutionary Computation. 44: 148–175. doi:10.1016/j.swevo.2018.02.013. ISSN   2210-6502. S2CID   58952523.
  77. Fathollahi-Fard, Amir Mohammad; Hajiaghaei-Keshteli, Mostafa; Tavakkoli-Moghaddam, Reza (2018-06-01). "The Social Engineering Optimizer (SEO)". Engineering Applications of Artificial Intelligence. 72: 267–293. doi:10.1016/j.engappai.2018.04.009. ISSN   0952-1976.
  78. Dhiman, Gaurav; Kumar, Vijay (2018-06-15). "Emperor penguin optimizer: a bio-inspired algorithm for engineering problems". Knowledge-Based Systems. 159: 20–50. doi:10.1016/j.knosys.2018.06.001. S2CID   52965498.
  79. Kumar, Meeta; Kulkarni, Anand J.; Satapathy, Suresh Chandra (2018-04-01). "Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology". Future Generation Computer Systems. 81: 252–272. doi:10.1016/j.future.2017.10.052. ISSN   0167-739X.
  80. Elsisi, M. (2019-03-01). "Future search algorithm for optimization". Evolutionary Intelligence. 12 (1): 21–31. doi:10.1007/s12065-018-0172-2. ISSN   1864-5917. S2CID   56702321.
  81. Harifi, Sasan; Khalilian, Madjid; Mohammadzadeh, Javad; Ebrahimnejad, Sadoullah (2019-06-01). "Emperor Penguins Colony: a new metaheuristic algorithm for optimization". Evolutionary Intelligence. 12 (2): 211–226. doi: 10.1007/s12065-019-00212-x . ISSN   1864-5917.
  82. Kaveh, A.; Dadras, A. (2017-08-01). "A novel meta-heuristic optimization algorithm: Thermal exchange optimization". Advances in Engineering Software. 110: 69–84. doi:10.1016/j.advengsoft.2017.03.014. ISSN   0965-9978.
  83. Heidari, Ali Asghar; Mirjalili, Seyedali; Faris, Hossam; Aljarah, Ibrahim; Mafarja, Majdi; Chen, Huiling (2019-08-01). "Harris hawks optimization: Algorithm and applications". Future Generation Computer Systems. 97: 849–872. doi:10.1016/j.future.2019.02.028. hdl: 10072/384262 . ISSN   0167-739X. S2CID   86457167.
  84. Askari, Qamar; Younas, Irfan; Saeed, Mehreen (2020-05-11). "Political Optimizer: A novel socio-inspired meta-heuristic for global optimization". Knowledge-Based Systems. 195: 105709. doi:10.1016/j.knosys.2020.105709. ISSN   0950-7051. S2CID   215830598.
  85. Askari, Qamar; Saeed, Mehreen; Younas, Irfan (2020-07-18). "Heap-based optimizer inspired by corporate rank hierarchy for global optimization". Expert Systems with Applications. 161: 113702. doi:10.1016/j.eswa.2020.113702. ISSN   0957-4174. S2CID   225042569.
  86. Zaeimi, Mohammad; Ghoddosian, Ali (2020-08-01). "Color harmony algorithm: an art-inspired metaheuristic for mathematical function optimization". Soft Computing. 24 (16): 12027–12066. doi:10.1007/s00500-019-04646-4. ISSN   1433-7479. S2CID   209543050.
  87. Kaveh, Ali; Talatahari, Siamak; Khodadadi, Nima (2020). "Stochastic Paint Optimizer: theory and application in civil engineering". Engineering with Computers. 38 (3): 1921–1952. doi:10.1007/s00366-020-01179-5. ISSN   0177-0667. S2CID   225121551.
  88. Zervoudakis, Konstantinos; Tsafarakis, Stelios (2020). "A mayfly optimization algorithm". Computers & Industrial Engineering. 145: 106559. doi:10.1016/j.cie.2020.106559. S2CID   219783081.
  89. Harifi, Sasan; Mohammadzadeh, Javad; Khalilian, Madjid; Ebrahimnejad, Sadoullah (2020-07-13). "Giza Pyramids Construction: an ancient-inspired metaheuristic algorithm for optimization". Evolutionary Intelligence. 14 (4): 1743–1761. doi:10.1007/s12065-020-00451-3. ISSN   1864-5917. S2CID   220512280.
  90. Azizi, Mahdi; Talatahari, Siamak; Gandomi, Amir H. (2023-01-01). "Fire Hawk Optimizer: a novel metaheuristic algorithm". Artificial Intelligence Review. 56 (1): 287–363. doi: 10.1007/s10462-022-10173-w . ISSN   1573-7462. S2CID   250057522.
  91. Zervoudakis, Konstantinos; Tsafarakis, Stelios (2023). "A global optimizer inspired from the survival strategies of flying foxes". Engineering with Computers. 39 (2): 1583–1616. doi:10.1007/s00366-021-01554-w. S2CID   245636526.
  92. Abdelhamid, Abdelaziz A.; Towfek, S. K.; Khodadadi, Nima; Alhussan, Amel Ali; Khafaga, Doaa Sami; Eid, Marwa M.; Ibrahim, Abdelhameed (May 2023). "Waterwheel Plant Algorithm: A Novel Metaheuristic Optimization Method". Processes. 11 (5): 1502. doi: 10.3390/pr11051502 . ISSN   2227-9717.
  93. Azizi, Mahdi; Aickelin, Uwe; A. Khorshidi, Hadi; Baghalzadeh Shishehgarkhaneh, Milad (2023-01-05). "Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization". Scientific Reports. 13 (1): 226. Bibcode:2023NatSR..13..226A. doi:10.1038/s41598-022-27344-y. ISSN   2045-2322. PMC   9816156 . PMID   36604589.
  94. Zhang, Wei; Pan, Ke; Li, Shigang; Wang, Yagang (2023-11-01). "Special Forces Algorithm: A novel meta-heuristic method for global optimization". Mathematics and Computers in Simulation. 213: 394–417. doi:10.1016/j.matcom.2023.06.015. ISSN   0378-4754.
  95. Azizi, Mahdi; Baghalzadeh Shishehgarkhaneh, Milad; Basiri, Mahla; Moehler, Robert C. (2023-04-01). "Squid Game Optimizer (SGO): a novel metaheuristic algorithm". Scientific Reports. 13 (1): 5373. Bibcode:2023NatSR..13.5373A. doi:10.1038/s41598-023-32465-z. ISSN   2045-2322. PMC   10066950 . PMID   37005455.
  96. Deng, Lingyun; Liu, Sanyang (2023-09-01). "Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design". Expert Systems with Applications. 225: 120069. doi:10.1016/j.eswa.2023.120069. ISSN   0957-4174.
  97. Abdel-Basset, Mohamed; Mohamed, Reda; Jameel, Mohammed; Abouhawwash, Mohamed (2023-10-01). "Spider wasp optimizer: a novel meta-heuristic optimization algorithm". Artificial Intelligence Review. 56 (10): 11675–11738. doi:10.1007/s10462-023-10446-y. ISSN   1573-7462.
  98. Niu, JingTai; Ren, Changjiang; Guan, Ziyu; Cao, Zhiyuan (2023-08-01). "Dujiangyan irrigation system optimization (DISO): A novel metaheuristic algorithm for dam safety monitoring". Structures. 54: 399–419. doi:10.1016/j.istruc.2023.04.102. ISSN   2352-0124.
  99. Guan, Ziyu; Ren, Changjiang; Niu, Jingtai; Wang, Peixi; Shang, Yizi (2023-12-15). "Great Wall Construction Algorithm: A novel meta-heuristic algorithm for engineer problems". Expert Systems with Applications. 233: 120905. doi:10.1016/j.eswa.2023.120905. ISSN   0957-4174.
  100. Abdollahzadeh, Benyamin; Khodadadi, Nima; Barshandeh, Saeid; Trojovský, Pavel; Gharehchopogh, Farhad Soleimanian; El-kenawy, El-Sayed M.; Abualigah, Laith; Mirjalili, Seyedali (2024-07-01). "Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning". Cluster Computing. 27 (4): 5235–5283. doi:10.1007/s10586-023-04221-5. ISSN   1573-7543.
  101. Han, Muxuan; Du, Zunfeng; Yuen, Kum Fai; Zhu, Haitao; Li, Yancang; Yuan, Qiuyu (2024-04-01). "Walrus optimizer: A novel nature-inspired metaheuristic algorithm". Expert Systems with Applications. 239: 122413. doi:10.1016/j.eswa.2023.122413. ISSN   0957-4174.