Targeted radiofrequency ablation

Last updated
Targeted radiofrequency ablation
Other namest-RFA
Specialty oncology

Targeted radiofrequency ablation (also written t-RFA) is a minimally invasive procedure to treat severe pain and discomfort caused from metastatic tumors in the vertebral body of the spine. This procedure uses radiofrequency energy to target and ablate a specific spinal tumor, causing it shrink and reduce the pressure on the surrounding nerves and tissues. The procedure minimizes damage to the vertebrae and surrounding tissues. It is used as a palliative therapy rather with the intention of treating the cancer itself. [1] [2]

Contents

History

Targeted radiofrequency ablation was first developed by DFINE, Inc., a medical device company based in San Jose, California.[ citation needed ] Its product, the STAR Tumor Ablation System received 510(k) clearance from the United States Food and Drug Administration in August 2010.[ citation needed ] It is cleared for sale in the US and CE marked in Europe. The procedure was first performed at the James Graham Brown Cancer Center located at the University of Louisville Hospital in March 2012.[ citation needed ]

Procedure

Targeted radiofrequency ablation is not a treatment for cancer, but is used for pain management. [2] It is usually an outpatient procedure using local anesthesia through a small incision. t-RFA uses a small steerable device that is placed into the vertebra, navigated by a physician to the targeted tumor. [3] The physician can then deliver the energy to heat and destroy metastatic spinal tumor cells. [3] The procedure minimizes damage to surrounding tissue and vital structures and has been shown to provide pain relief in a single treatment.

Efficacy

A 2013 study published in the Journal of NeuroInterventional Surgery showed that t-RFA was an effective method of pain relief with low morbidity. [1] Patients in the study also reduced their requirements of pain relieving drugs after receiving the treatment and also regained the ability to perform movements that they were previously restricted from due to the pain. [1] Another 2013 study published in the Journal of Vascular and Interventional Radiology showed that patients receiving the procedure had reduced pain where traditional treatment methods were unsuccessful. [3] A third study published in 2013 showed that t-RFA allowed treatment of lesions that were not controlled by either radiation therapy or systemic therapy. [4] A 2014 study published in the Journal of Vascular and Interventional Radiology showed a decrease in tumor volume and metabolic activity in all 34 patients who received the treatment. [3]

The ability to provide localized t-RFA of metastatic lesions of the spine may provide rapid and lasting pain relief, enabling patients to restore their quality of life with minimal, if any, delay in systemic, curative therapy of their primary cancer. [5] As compared to radiation, which often requires multiple visits, the procedure provides patients with pain relief from metastatic spinal tumors in a single, minimally invasive treatment. [5] The STAR System potentially minimizes additional VCFs due to radiation related bone fragility as well as the side effects of radiation. [5]

This procedure can be performed in addition to chemotherapy, radiation therapy or other therapies that are ongoing to treat the primary cancer often allowing the patient the tolerance to continue their therapy. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Radiation therapy</span> Therapy using ionizing radiation, usually to treat cancer

Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a treatment using ionizing radiation, generally provided as part of cancer therapy to either kill or control the growth of malignant cells. It is normally delivered by a linear particle accelerator. Radiation therapy may be curative in a number of types of cancer if they are localized to one area of the body, and have not spread to other parts. It may also be used as part of adjuvant therapy, to prevent tumor recurrence after surgery to remove a primary malignant tumor. Radiation therapy is synergistic with chemotherapy, and has been used before, during, and after chemotherapy in susceptible cancers. The subspecialty of oncology concerned with radiotherapy is called radiation oncology. A physician who practices in this subspecialty is a radiation oncologist.

<span class="mw-page-title-main">Hepatocellular carcinoma</span> Medical condition

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and is currently the most common cause of death in people with cirrhosis. HCC is the third leading cause of cancer-related deaths worldwide.

<span class="mw-page-title-main">Bone tumor</span> Medical condition

A bone tumor is an abnormal growth of tissue in bone, traditionally classified as noncancerous (benign) or cancerous (malignant). Cancerous bone tumors usually originate from a cancer in another part of the body such as from lung, breast, thyroid, kidney and prostate. There may be a lump, pain, or neurological signs from pressure. A bone tumor might present with a pathologic fracture. Other symptoms may include fatigue, fever, weight loss, anemia and nausea. Sometimes there are no symptoms and the tumour is found when investigating another problem.

<span class="mw-page-title-main">Interventional radiology</span> Medical subspecialty

Interventional radiology (IR) is a medical specialty that performs various minimally-invasive procedures using medical imaging guidance, such as x-ray fluoroscopy, computed tomography, magnetic resonance imaging, or ultrasound. IR performs both diagnostic and therapeutic procedures through very small incisions or body orifices. Diagnostic IR procedures are those intended to help make a diagnosis or guide further medical treatment, and include image-guided biopsy of a tumor or injection of an imaging contrast agent into a hollow structure, such as a blood vessel or a duct. By contrast, therapeutic IR procedures provide direct treatment—they include catheter-based medicine delivery, medical device placement, and angioplasty of narrowed structures.

<span class="mw-page-title-main">Vertebral augmentation</span> Type of spinal procedure

Vertebral augmentation, including vertebroplasty and kyphoplasty, refers to similar percutaneous spinal procedures in which bone cement is injected through a small hole in the skin into a fractured vertebra in order to relieve back pain caused by a vertebral compression fracture. After decades of medical research into the efficacy and safety of vertebral augmentation, there is still a lack of consensus regarding certain aspects of vertebroplasty and kyphoplasty.

Spinal tumors are neoplasms located in either the vertebral column or the spinal cord. There are three main types of spinal tumors classified based on their location: extradural and intradural. Extradural tumors are located outside the dura mater lining and are most commonly metastatic. Intradural tumors are located inside the dura mater lining and are further subdivided into intramedullary and extramedullary tumors. Intradural-intramedullary tumors are located within the dura and spinal cord parenchyma, while intradural-extramedullary tumors are located within the dura but outside the spinal cord parenchyma. The most common presenting symptom of spinal tumors is nocturnal back pain. Other common symptoms include muscle weakness, sensory loss, and difficulty walking. Loss of bowel and bladder control may occur during the later stages of the disease.

<span class="mw-page-title-main">Radiosurgery</span> Surgical Specialty

Radiosurgery is surgery using radiation, that is, the destruction of precisely selected areas of tissue using ionizing radiation rather than excision with a blade. Like other forms of radiation therapy, it is usually used to treat cancer. Radiosurgery was originally defined by the Swedish neurosurgeon Lars Leksell as "a single high dose fraction of radiation, stereotactically directed to an intracranial region of interest".

<span class="mw-page-title-main">Radiofrequency ablation</span> Surgical procedure

Radiofrequency ablation (RFA), also called fulguration, is a medical procedure in which part of the electrical conduction system of the heart, tumor or other dysfunctional tissue is ablated using the heat generated from medium frequency alternating current. RFA is generally conducted in the outpatient setting, using either local anesthetics or twilight anesthesia. When it is delivered via catheter, it is called radiofrequency catheter ablation.

<span class="mw-page-title-main">Non-small-cell lung cancer</span> Any type of epithelial lung cancer other than small-cell lung carcinoma

Non-small-cell lung cancer (NSCLC), or non-small-cell lung carcinoma, is any type of epithelial lung cancer other than small-cell lung cancer (SCLC). NSCLC accounts for about 85% of all lung cancers. As a class, NSCLCs are relatively insensitive to chemotherapy, compared to small-cell carcinoma. When possible, they are primarily treated by surgical resection with curative intent, although chemotherapy has been used increasingly both preoperatively and postoperatively.

<span class="mw-page-title-main">Cryoablation</span> Process using extreme cold to destroy tissue

Cryoablation is a process that uses extreme cold to destroy tissue. Cryoablation is performed using hollow needles (cryoprobes) through which cooled, thermally conductive, fluids are circulated. Cryoprobes are positioned adjacent to the target in such a way that the freezing process will destroy the diseased tissue. Once the probes are in place, the attached cryogenic freezing unit removes heat from ("cools") the tip of the probe and by extension from the surrounding tissues.

<span class="mw-page-title-main">Osteoid osteoma</span> Medical condition

An osteoid osteoma is a benign (non-cancerous) bone tumor that arises from osteoblasts and some components of osteoclasts. It was originally thought to be a smaller version of an osteoblastoma. Osteoid osteomas tend to be less than 1.5 cm in size. The tumor can be in any bone in the body but are most common in long bones, such as the femur and tibia. They account for 10 to 12 percent of all benign bone tumors and 2 to 3 percent of all abnormal bone growths. Osteoid osteomas may occur at any age, and are most common in patients between the ages of 4 and 25 years old. Males are affected approximately three times more commonly than females.

<span class="mw-page-title-main">Selective internal radiation therapy</span>

Selective internal radiation therapy (SIRT), also known as transarterial radioembolization (TARE), radioembolization or intra-arterial microbrachytherapy is a form of radiation therapy used in interventional radiology to treat cancer. It is generally for selected patients with surgically unresectable cancers, especially hepatocellular carcinoma or metastasis to the liver. The treatment involves injecting tiny microspheres of radioactive material into the arteries that supply the tumor, where the spheres lodge in the small vessels of the tumor. Because this treatment combines radiotherapy with embolization, it is also called radioembolization. The chemotherapeutic analogue is called chemoembolization, of which transcatheter arterial chemoembolization (TACE) is the usual form.

<span class="mw-page-title-main">Bone metastasis</span> Medical condition

Bone metastasis, or osseous metastatic disease, is a category of cancer metastases that result from primary tumor invasions into bones. Bone-originating primary tumors such as osteosarcoma, chondrosarcoma, and Ewing sarcoma are rare; the most common bone tumor is a metastasis. Bone metastases can be classified as osteolytic, osteoblastic, or both. Unlike hematologic malignancies which originate in the blood and form non-solid tumors, bone metastases generally arise from epithelial tumors and form a solid mass inside the bone. Bone metastases, especially in a state of advanced disease, can cause severe pain, characterized by a dull, constant ache with periodic spikes of incident pain.

Treatment of lung cancer refers to the use of medical therapies, such as surgery, radiation, chemotherapy, immunotherapy, percutaneous ablation, and palliative care, alone or in combination, in an attempt to cure or lessen the adverse impact of malignant neoplasms originating in lung tissue.

Microwave ablation is a form of thermal ablation used in interventional radiology to treat cancer. MWA uses electromagnetic waves in the microwave energy spectrum to produce tissue-heating effects. The oscillation of polar molecules produces frictional heating, ultimately generating tissue necrosis within solid tumors. It is generally used for the treatment and/or palliation of solid tumors in patients who are nonsurgical candidate.

Irreversible electroporation is a soft tissue ablation technique using short but strong electrical fields to create permanent and hence lethal nanopores in the cell membrane, to disrupt cellular homeostasis. The resulting cell death results from induced apoptosis or necrosis induced by either membrane disruption or secondary breakdown of the membrane due to transmembrane transfer of electrolytes and adenosine triphosphate. The main use of IRE lies in tumor ablation in regions where precision and conservation of the extracellular matrix, blood flow and nerves are of importance. The first generation of IRE for clinical use, in the form of the NanoKnife System, became commercially available for research purposes in 2009, solely for the surgical ablation of soft tissue tumors. Cancerous tissue ablation via IRE appears to show significant cancer specific immunological responses which are currently being evaluated alone and in combination with cancer immunotherapy.

DFINE, Inc. was an American medical device company with headquarters in San Jose, California. It was known for its development of minimally invasive therapeutic devices built upon a radiofrequency platform for the treatment of spinal diseases. The platform included two applications, the StabiliT Vertebral Augmentation System for the treatment of vertebral compression fractures and the STAR Tumor Ablation System for pain relief treatment of metastatic spinal tumors.

Interventional oncology is a subspecialty field of interventional radiology that deals with the diagnosis and treatment of cancer and cancer-related problems using targeted minimally invasive procedures performed under image guidance. Interventional oncology has developed to a separate pillar of modern oncology and it employs X-ray, ultrasound, computed tomography (CT) or magnetic resonance imaging (MRI) to help guide miniaturized instruments to allow targeted and precise treatment of solid tumours located in various organs of the human body, including but not limited to the liver, kidneys, lungs, and bones. Interventional oncology treatments are routinely carried out by interventional radiologists in appropriate settings and facilities.

Transarterial bland embolization is a catheter-based tumor treatment of the liver. In this procedure, a variety of embolizing agents can be delivered through the tumor’s feeding artery in order to completely occlude the tumor’s blood supply. The anti-tumor effects are solely based on tumor ischemia and infarction of tumor tissue, as no chemotherapeutic agents are administered. The rationale for the use of bland embolization for hepatocellular carcinoma(HCC) and/or other hyper-vascular tumors is based on the fact that normal liver receives a dual blood supply from the hepatic artery (25%) and the portal vein (75%). As the tumor grows, it becomes increasingly dependent on the hepatic artery for blood supply. Once a tumor nodule reaches a diameter of 2 cm or more, most of the blood supply is derived from the hepatic artery. Therefore, bland embolization and transarterial chemoembolization (TACE) consist of the selective angiographic occlusion of the tumor arterial blood supply with a variety of embolizing agents, with or without the precedence of local chemotherapy infusion. The occlusion by embolic particles results in tumor hypoxia and necrosis, without affecting the normal hepatic parenchyma.

Damian E. Dupuy, M.D., F.A.C.R. is an Adjunct Professor of Diagnostic Imaging at Brown University's Warren Alpert Medical School and Director of Ablation services at Cape Cod Hospital. He is also a Member of Cape Cod preferred Physicians.

References

  1. 1 2 3 Zablow, B (2013). "E-072 Image Guided Targeted Radiofrequency (t-RFA) and Sacroplasty of Hypervascular Sacral Metastases for Pain Control". Journal of NeuroInterventional Surgery. 5 (Suppl 2). doi:10.1136/neurintsurg-2013-010870.130 . Retrieved 7 May 2014.
  2. 1 2 Dhand, S; J.A. Tepper; S.J. Smith; R.K. Ryu (July 2013). "Targeted Radiofrequency Ablation (t-RFA) with Vertebral Augmentation for the Treatment of Symptomatic metastatic Spinal Tumors: Safety and Efficacy of a Novel Single Treatment". Journal of Vascular and Interventional Radiology. 24 (7).
  3. 1 2 3 4 Georgy, B; J Padwal (March 2014). "Targeted radiofrequency ablation (t-RFA) prior to cement augmentation of symptomatic malignant spine lesions: clinical evaluation". Journal of Vascular and Interventional Radiology. 25 (3): S111. doi:10.1016/j.jvir.2013.12.306 . Retrieved 7 May 2014.
  4. Jennings, J.; W. Irving; B. Georgy; D. Coldwell; B. Zablow; C. DePena; A. Brook (April 2013). "Image-guided targeted radiofrequency ablation (t-RFA) of spinal tumors using a novel bipolar navigational device: multicenter initial clinical experience". Journal of Vascular and Interventional Radiology. 24 (4): S44–S45. doi: 10.1016/j.jvir.2013.01.100 .
  5. 1 2 3 Boehling, NS; DR Grosshans; PK Allen; MF McAller; AW Burton; S Azeem; LD Rhines; EL Chang (6 January 2012). "Vertebral compression fractures after stereotactic body radiotherapy for spinal metastases". J Neurosurg Spine. 16 (4): 379–86. doi:10.3171/2011.11.SPINE116. PMID   22225488. S2CID   207705168.
  6. Ley, J (2013). "Targeted radiofrequency ablation of metastatic posterior vertebral body lesions in patients with soft tissue sarcomas". J Clin Oncol (Supplement). Retrieved 9 July 2014.