Tarski's exponential function problem

Last updated

In model theory, Tarski's exponential function problem asks whether the theory of the real numbers together with the exponential function is decidable. Alfred Tarski had previously shown that the theory of the real numbers (without the exponential function) is decidable. [1]

Contents

The problem

The ordered real field is a structure over the language of ordered rings , with the usual interpretation given to each symbol. It was proved by Tarski that the theory of the real field, , is decidable. That is, given any -sentence there is an effective procedure for determining whether

He then asked whether this was still the case if one added a unary function to the language that was interpreted as the exponential function on , to get the structure .

Conditional and equivalent results

The problem can be reduced to finding an effective procedure for determining whether any given exponential polynomial in variables and with coefficients in has a solution in . Macintyre & Wilkie (1996) showed that Schanuel's conjecture implies such a procedure exists, and hence gave a conditional solution to Tarski's problem. [2] Schanuel's conjecture deals with all complex numbers so would be expected to be a stronger result than the decidability of , and indeed, Macintyre and Wilkie proved that only a real version of Schanuel's conjecture is required to imply the decidability of this theory.

Even the real version of Schanuel's conjecture is not a necessary condition for the decidability of the theory. In their paper, Macintyre and Wilkie showed that an equivalent result to the decidability of is what they dubbed the weak Schanuel's conjecture. This conjecture states that there is an effective procedure that, given and exponential polynomials in variables with integer coefficients , produces an integer that depends on , and such that if is a non-singular solution of the system

then either or .

Related Research Articles

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.

In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree. That is, if k is an integer, a function f of n variables is homogeneous of degree k if

In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.

In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

<span class="mw-page-title-main">Schanuel's conjecture</span> Conjecture on the transcendence degree of field extensions to the rational numbers

In mathematics, specifically transcendental number theory, Schanuel's conjecture is a conjecture made by Stephen Schanuel in the 1960s concerning the transcendence degree of certain field extensions of the rational numbers.

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

In control theory, a control-Lyapunov function (CLF) is an extension of the idea of Lyapunov function to systems with control inputs. The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or asymptotically stable. Lyapunov stability means that if the system starts in a state in some domain D, then the state will remain in D for all time. For asymptotic stability, the state is also required to converge to . A control-Lyapunov function is used to test whether a system is asymptotically stabilizable, that is whether for any state x there exists a control such that the system can be brought to the zero state asymptotically by applying the control u.

In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma, the likelihood-ratio test is UMP for testing simple (point) hypotheses.

In mathematics, an exponential field is a field with a further unary operation that is a homomorphism from the field's additive group to its multiplicative group. This generalizes the usual idea of exponentiation on the real numbers, where the base is a chosen positive real number.

In cryptography, learning with errors (LWE) is a mathematical problem that is widely used to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.

In mathematics, superfunction is a nonstandard name for an iterated function for complexified continuous iteration index. Roughly, for some function f and for some variable x, the superfunction could be defined by the expression

For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.

In mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressions over real variables. The corresponding first-order theory is the set of sentences that are actually true of the real numbers. There are several different such theories, with different expressive power, depending on the primitive operations that are allowed to be used in the expression. A fundamental question in the study of these theories is whether they are decidable: that is, whether there is an algorithm that can take a sentence as input and produce as output an answer "yes" or "no" to the question of whether the sentence is true in the theory.

<span class="mw-page-title-main">Constant-recursive sequence</span> Infinite sequence of numbers satisfying a linear equation

In mathematics, an infinite sequence of numbers is called constant-recursive if it satisfies an equation of the form

In mathematics, the field of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of objects. Each log-exp transseries represents a formal asymptotic behavior, and it can be manipulated formally, and when it converges, corresponds to actual behavior. Transseries can also be convenient for representing functions. Through their inclusion of exponentiation and logarithms, transseries are a strong generalization of the power series at infinity and other similar asymptotic expansions.

In mathematics, an ordered exponential field is an ordered field together with a function which generalises the idea of exponential functions on the ordered field of real numbers.

References

  1. Kuhlmann, S. "Model theory of the real exponential function". Encyclopedia of Mathematics. Heidelberg: Springer-Verlag. Retrieved 2024-08-07.
  2. Macintyre, Angus; Wilkie, Alex (1996). Oddifreddi, Piergiorgio (ed.). On the Decidability of the Real Exponential Field, in: Kreiseliana: about and around Georg Kreisel. Wellesley, MA: A K Peters. pp. 441–467. ISBN   9781568810614. MR   1435773. Zbl   0896.03012.