Technological theory of social production

Last updated

In the technological theory of social production, the growth of output, measured in money units, is related to achievements in technological consumption of labour and energy. This theory is based on concepts of classical political economy and neo-classical economics and appears to be a generalisation of the known economic models, such as the neo-classical model of economic growth and input-output model.

Contents

The main relations of the theory

The major characteristics of social production is its output , that is production of value in unit of time, the original sources of which are production factors, which are some universal characteristics of production processes. In classical political economy (Smith, Marx, Ricardo), it is human efforts (labour) , which are measured in working hours. Neoclassical practice [1] [2] adds capital , which is a money estimate of production equipment, that is value of the collection of all energy-conversion machines and information processing equipment, plus ancillary structures to contain and move them, including residential housing, when one considers capital in a wider sense. The earliest theories assumed, that output can be considered a function of labour and capital , as creative factors of production,

This relation formalised the concept of neo-classical political economy about substitution of labour by capital. There can be different realisation of the above function. The next important step to the understanding of economic growth was done in the middle of the past century. To incorporate into the theory technological progress, which is believed is ultimately the source of economic growth in developed countries in recent centuries, it was suggested [2] to modify concepts of arguments in the production function and consider them to be not capital and expenditures of labour, but services of the capital and work , so that

The quantity and are capital and labour services which are connected with measured quantities of capital stock and labour , but are somewhat different from them. In other words, an extra time dependence of the production function (so called exogenous technological progress) has to be assumed. This approach describes the empirical data by use of the two production factors and some empirical quantity called total factor productivity. Suggesting that capital service can be considered as an independent variable, whereas labour service is regarded just as labour, one came to the formulation of technological theory, in which, taking also capital stock into account, production of value can be considered as a function of the three production factors

This function can also be compared with the previous equation, in which capital as variable played two distinctive roles: capital stock as value of production equipment and capital service as a substitute of labour. The only thing which is done is a separation of the two roles of capital: we consider capital stock to be the means of attracting labour and capital service , to the production. It was shown also that capital service , as one of the three factors of production, has a meaning of substitutive work of production equipment (energy delivered to animate production equipment). [3] [4] [5] [6] [7] The theory was considered in one sector an approximation of the production system, including some reference to multi-sector approach.

Dynamics of production factors

The expansion of production, characterised by changes of the accumulated value , requires additional labour and substitutive work , so that dynamics of the production factors can be written [5] [6] as the balance equations

 

 

 

 

(1)

The first terms in the right side of these relations describe the increase in the quantities caused by gross investments accumulated in a material form of production equipment. Equations (1) introduce the quality of investment that is technological characteristics of production equipment: coefficients of labour and energy requirement, which can be manipulated both in the dimensional, and , and dimensionless (with a bar on the top) forms, and The second terms on the right side of equations (1) reflect the decrease in the corresponding quantities due to the removal of a part of the production equipment from service with the depreciation coefficient , which is taken equal for all factors due to assumption, that the technological characteristics of the equipment do not change after its installation, otherwise the dynamic equations takes a more complex form. [5]

Production function

Production function, as function of independent variables: labour , capital and substitutive work , have to satisfy some requirements, which help to determine its form. Taking into account that substitutive work and labour inputs are substitutes to each other and capital has to be considered to be a complement to work ( and ) of the production equipment, the production function for our case can be specified [6] [8] as:

 

 

 

 

(2)

where , and correspond to output, labour and substitutive work in the base year. The index is connected with technological characteristics of production equipment

 

 

 

 

(3)

After differentiating of relations (2), one get the expression for the growth rate of output

 

 

 

 

(4)

The first terms in the right side of the equation represent a contribution to the growth rate of output of the growth rate of production factors: labor and substitution work, the latter - a contribution due to changes in the production system directly. The productivity of the capital stock and the index in equation (2) are parameters of the production system itself, and their derivatives are related to each other and to the characteristics of production system [5] as

 

 

 

 

(5)

In the multi-sector approach (input-output model), changes in the technological index are related to aggregate sectoral technological change and to the difference in the growth rates across sectors. [5]

This formulation offers two complementary descriptions of the production of value. The first line in equation (2) relates output to the amount of production equipment (capital stock) while the second describes the process of production through property of the same equipment to attract labour and energy (labour and substitutive work). The first line is analogous to the production technology found in the Harrod-Domar growth model, [9] [10] [11] [12] while the function in the second resembles the Cobb-Douglas production function. [1]

Three modes of development

The real investments are determined by the assumption that the production system tries to swallow up all available production factors. In any case the rates of real growth do not exceed the rates of potential growth, given as functions of time

 

 

 

 

(6)

so that, in virtue of equations (1), one ought to write for investments

 

 

 

 

(7)

The three lines of this relation define three modes of economic development, for which one has different formulae for calculation of the rates of real growth. The first line in (5) is valid in the case of lack of investment, abundance of labour, energy and raw materials. The second line is valid in the case of lack of labour, abundance of investment, energy and raw materials. The last line of equations is valid in the case of lack of energy, abundance of investment, labour and raw materials.

Dynamics of technological coefficients

Assuming also, that the technological coefficients have tendencies to change in such a way that the production system tries to exploit all available production factors, in the first approximation, one can get [5] the equations for the technological coefficients

 

 

 

 

(8)

where is time of crossover from one technological situation to another, when external parameters and change. It is determined by internal processes of attracting of the proper technology.

Implementations

The written above relations present a framework of description of economic development, which can be applied in case, if availability of production factors, determined by their rates of potential growth for labour and for substitutive work, are given. The first quantity is connected with number of population, in fact, one can count that labour force is about half of the total number of population. The availability of substitutive work is a more uncertain quantity. It is determined by fundamental results of science, by research, by project works, and by materialisation of all human imagination about how to use energy instead of labour for production. The availability of production factors ought to be endogenous in a problem of evolution of human population, when dynamics of population and stock of knowledge are included into consideration.

Productivity of labour

The scientific and technical progress can be reduced to processes of introduction of innovations, that is consecutive replacement of instruments, materials, designs, adaptations and other objects with more perfect from this or that point of view. Among all processes of replacement, the outstanding role is played the process of replacement of alive work by work of machines with assistance of forces of the nature. Substitution of efforts with work of machines is unique process of replacement which influences the labor productivity as the ratio of value of output to expenditures of labour. Productivity of labour depends on the ratio of substitutive work to workers' efforts and, according to (2), can be expressed as

 

 

 

 

(9)

Here, output should be measured in value units of constant purchasing capacity, that is, as one speaks, to represent a 'physical' measure of output.

The growth rate of labour productivity is expressed via four quantities as

 

 

 

 

(10)

The labour requirement appears to be the most important quantity, which determines the change of productivity of labour. If , variations in technology do not occur, labor productivity is constant, and all increment of output is connected only with an increase in human's efforts. Human efforts are, certainly, the main motive power, but, under condition of the workers' efforts partially are replaced with work of the machines movable by outer energy sources, and the labor productivity increases. This is a general description of influence of scientific and technological progress, which is naturally entered in a picture of progress of mankind.

Increase in labor productivity cannot be understood without taking into account the phenomenon accompanying progress of production - attraction of natural energy sources (animals, wind, water, coal, oil and others) for performance of works that replaces efforts of the humans in production. The developing of machine technologies appears to give increase, via effect of substitution, in labour productivity. A progressively greater amount of energy is used by human societies via improvements in technology.

Exponential growth

The theory can be applied to describe the 'stylised' facts of economic growth, that is, exponential growth of output and production factors. In such, relatively calm periods of development, the rates of growth of production factors can be considered to be constant, which gives, according to equation (1), exponential growth of production factors

 

 

 

 

(11)

To obtain an expression for output, one refers to relations (2) and (8), according to which, the output can be written in the following form

 

 

 

 

(12)

This relation describe a well known fact, that the growth rate of output is equal to the growth rate of capital. [13] [14] The difference between the growth rates of capital and output seems to be quite unreliable, given the rough estimate of the parameters of the problem, though, at more detailed consideration, the difference can be explained by distinction of the growth rates of sector outputs. [5]

The rate of growth of output can be broken on two parts, while on the average a fraction of the rate is connected with growth of expenditures of labour, and the other part —with growth of substitutive work. The theory predicts, that in the future, when and energy conversion efficiency approaches thermodynamic limits, the growth rate of output approaches to the growth rate of consumption of total amount of energy carrier multiplied by the technological coefficient .

Though capital is the means of attracting the production factors to production, increase in consumption of the production factors is connected with increase in capital. One can formally separate the growth rate of capital in the growth rate of output to get the expression for conventional Solow residual (total factor productivity) in neoclassical theory of economic growth as

 

 

 

 

(13)

.

See also

Related Research Articles

Growth accounting is a procedure used in economics to measure the contribution of different factors to economic growth and to indirectly compute the rate of technological progress, measured as a residual, in an economy. Growth accounting decomposes the growth rate of an economy's total output into that which is due to increases in the contributing amount of the factors used—usually the increase in the amount of capital and labor—and that which cannot be accounted for by observable changes in factor utilization. The unexplained part of growth in GDP is then taken to represent increases in productivity or a measure of broadly defined technological progress.

<span class="mw-page-title-main">Cobb–Douglas production function</span> Macroeconomic formula that describes productivity

In economics and econometrics, the Cobb–Douglas production function is a particular functional form of the production function, widely used to represent the technological relationship between the amounts of two or more inputs and the amount of output that can be produced by those inputs. The Cobb–Douglas form was developed and tested against statistical evidence by Charles Cobb and Paul Douglas between 1927–1947; according to Douglas, the functional form itself was developed earlier by Philip Wicksteed.

<span class="mw-page-title-main">Endogenous growth theory</span> Economic theory

Endogenous growth theory holds that economic growth is primarily the result of endogenous and not external forces. Endogenous growth theory holds that investment in human capital, innovation, and knowledge are significant contributors to economic growth. The theory also focuses on positive externalities and spillover effects of a knowledge-based economy which will lead to economic development. The endogenous growth theory primarily holds that the long run growth rate of an economy depends on policy measures. For example, subsidies for research and development or education increase the growth rate in some endogenous growth models by increasing the incentive for innovation.

Production function Used to define marginal product and to distinguish allocative efficiency

In economics, a production function gives the technological relation between quantities of physical inputs and quantities of output of goods. The production function is one of the key concepts of mainstream neoclassical theories, used to define marginal product and to distinguish allocative efficiency, a key focus of economics. One important purpose of the production function is to address allocative efficiency in the use of factor inputs in production and the resulting distribution of income to those factors, while abstracting away from the technological problems of achieving technical efficiency, as an engineer or professional manager might understand it.

Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production process, i.e. output per unit of input, typically over a specific period of time. The most common example is the (aggregate) labour productivity measure, one example of which is GDP per worker. There are many different definitions of productivity and the choice among them depends on the purpose of the productivity measurement and/or data availability. The key source of difference between various productivity measures is also usually related to how the outputs and the inputs are aggregated to obtain such a ratio-type measure of productivity.

Marginal product Change in output resulting from employing one more unit of a particular input

In economics and in particular neoclassical economics, the marginal product or marginal physical productivity of an input is the change in output resulting from employing one more unit of a particular input, assuming that the quantities of other inputs are kept constant.

<span class="mw-page-title-main">Diminishing returns</span> Economic Theory

In economics, diminishing returns is the decrease in marginal (incremental) output of a production process as the amount of a single factor of production is incrementally increased, holding all other factors of production equal. The law of diminishing returns states that in productive processes, increasing a factor of production by one unit, while holding all other production factors constant, will at some point return a lower unit of output per incremental unit of input. The law of diminishing returns does not cause a decrease in overall production capabilities, rather it defines a point on a production curve whereby producing an additional unit of output will result in a loss and is known as negative returns. Under diminishing returns, output remains positive, however productivity and efficiency decrease.

<span class="mw-page-title-main">James Meade</span> British economist who won Nobel in Economics in 1977

James Edward Meade, was a British economist and winner of the 1977 Nobel Memorial Prize in Economic Sciences jointly with the Swedish economist Bertil Ohlin for their "pathbreaking contribution to the theory of international trade and international capital movements".

Heckscher–Ohlin model

The Heckscher–Ohlin model is a general equilibrium mathematical model of international trade, developed by Eli Heckscher and Bertil Ohlin at the Stockholm School of Economics. It builds on David Ricardo's theory of comparative advantage by predicting patterns of commerce and production based on the factor endowments of a trading region. The model essentially says that countries export the products which use their relatively abundant and cheap factors of production, and import the products which use the countries' relatively scarce factors.

The Solow residual is a number describing empirical productivity growth in an economy from year to year and decade to decade. Robert Solow, the Nobel Memorial Prize in Economic Sciences-winning economist, defined rising productivity as rising output with constant capital and labor input. It is a "residual" because it is the part of growth that is not accounted for by measures of capital accumulation or increased labor input. Increased physical throughput – i.e. environmental resources – is specifically excluded from the calculation; thus some portion of the residual can be ascribed to increased physical throughput. The example used is for the intracapital substitution of aluminium fixtures for steel during which the inputs do not alter. This differs in almost every other economic circumstance in which there are many other variables. The Solow residual is procyclical and measures of it are now called the rate of growth of multifactor productivity or total factor productivity, though Solow (1957) did not use these terms.

In economics, total-factor productivity (TFP), also called multi-factor productivity, is usually measured as the ratio of aggregate output to aggregate inputs. Under some simplifying assumptions about the production technology, growth in TFP becomes the portion of growth in output not explained by growth in traditionally measured inputs of labour and capital used in production. TFP is calculated by dividing output by the weighted geometric average of labour and capital input, with the standard weighting of 0.7 for labour and 0.3 for capital. Total factor productivity is a measure of productive efficiency in that it measures how much output can be produced from a certain amount of inputs. It accounts for part of the differences in cross-country per-capita income. For relatively small percentage changes, the rate of TFP growth can be estimated by subtracting growth rates of labor and capital inputs from the growth rate of output.

<span class="mw-page-title-main">Solow–Swan model</span> Model of long-run economic growth

The Solow–Swan model or exogenous growth model is an economic model of long-run economic growth. It attempts to explain long-run economic growth by looking at capital accumulation, labor or population growth, and increases in productivity largely driven by technological progress. At its core, it is an aggregate production function, often specified to be of Cobb–Douglas type, which enables the model "to make contact with microeconomics". The model was developed independently by Robert Solow and Trevor Swan in 1956, and superseded the Keynesian Harrod–Domar model.

Constant elasticity of substitution (CES), in economics, is a property of some production functions and utility functions. Several economists have featured in the topic and have contributed in the final finding of the constant. They include Tom McKenzie, John Hicks and Joan Robinson. The vital economic element of the measure is that it provided the producer a clear picture of how to move between different modes or types of production.

<span class="mw-page-title-main">Production (economics)</span> Process of using materials to produce something

Production is the process of combining various material inputs and immaterial inputs in order to make something for consumption (output). It is the act of creating an output, a good or service which has value and contributes to the utility of individuals. The area of economics that focuses on production is referred to as production theory, which is intertwined with the consumption theory of economics.

<span class="mw-page-title-main">Luigi Pasinetti</span> Italian economist

Luigi L. Pasinetti is an Italian economist of the post-Keynesian school. Pasinetti is considered the heir of the "Cambridge Keynesians" and a student of Piero Sraffa and Richard Kahn. Along with them, as well as Joan Robinson, he was one of the prominent members on the "Cambridge, UK" side of the Cambridge capital controversy. His contributions to economics include developing the analytical foundations of neo-Ricardian economics, including the theory of value and distribution, as well as work in the line of Kaldorian theory of growth and income distribution. He has also developed the theory of structural change and economic growth, structural economic dynamics and uneven sectoral development.

The Goodwin model, sometimes called Goodwin's class struggle model, is a model of endogenous economic fluctuations first proposed by the American economist Richard M. Goodwin in 1967. It combines aspects of the Harrod–Domar growth model with the Phillips curve to generate endogenous cycles in economic activity unlike most modern macroeconomic models in which movements in economic aggregates are driven by exogenously assumed shocks. Since Goodwin's publication in 1967, the model has been extended and applied in various ways.

In economics, factor payments are the income people receive for supplying the factors of production: land, labor, capital or entrepreneurship.

The AK model of economic growth is an endogenous growth model used in the theory of economic growth, a subfield of modern macroeconomics. In the 1980s it became progressively clearer that the standard neoclassical exogenous growth models were theoretically unsatisfactory as tools to explore long run growth, as these models predicted economies without technological change and thus they would eventually converge to a steady state, with zero per capita growth. A fundamental reason for this is the diminishing return of capital; the key property of AK endogenous-growth model is the absence of diminishing returns to capital. In lieu of the diminishing returns of capital implied by the usual parameterizations of a Cobb–Douglas production function, the AK model uses a linear model where output is a linear function of capital. Its appearance in most textbooks is to introduce endogenous growth theory.

Joan Robinson's Growth Model is a simple model of economic growth, reflecting the working of a pure capitalist economy, expounded by Joan Robinson in her 1956 book The Accumulation of Capital. However, The Accumulation of Capital was a terse book. In a later book, Essays in the theory of Economic Growth, she tried to lower the degree of abstraction. Robinson presented her growth model in verbal terms. A mathematical formalization was later provided by Kenneth K. Kurihara.

Econodynamics is an empirical science that studies emergences, motion and disappearance of value—a specific concept that is used for description of the processes of creation and distribution of wealth. Any economic theory deals with the interpretation of economic processes based on the law of production of value, and various scientific approaches differ in the choice of factors of production that determine, in the end, the creation of wealth. Marxists insist that only labor creates value, neoclassicists believe that, in addition to labor, capital must also be taken into account as the important source of value. Econodynamics demonstrates that the statement about the productive power of capital is a hoax that hides the real role of labor and energy in the production of value. Econodynamics offers a more adequate interpretation of economic growth and other phenomena.Econodynamics is based on the achievements of classical political economy and neo-classical economics and has been using the methods of phenomenological science to investigate evolution of economic system. Econodynamics has been proposing methods of analysis and forecasting of economic processes. The comprehensive review of the problems of econodynamics is given recently by Vladimir Pokrovskii.

References

  1. 1 2 G.W. Cobb and P.N. Douglas, A Theory of Production, American Economic Review, Suppl. (March 1928), pp. 139-165.
  2. 1 2 R. Solow, Technical Change and the Aggregate Production Function, Review of Economic Studies, vol. 39 (Aug. 1957), pp. 312-330.
  3. B.C. Beaudreau, Energy and Organization: Growth and Distribution Reexamined (Greenwood Press, the first ed., 1998; the second ed.: 2008).
  4. B.C. Beaudreau, Energy rent. A scientific theory of income distribution. New York, Lincoln, Shanghai: iUniverse, Inc., 2005.
  5. 1 2 3 4 5 6 7 V.N. Pokrovski, Physical Principles in the Theory of Economic Growth, Ashgate Publishing, Aldershot, 1999. A revised and extended version of the monograph is published by Springer (2011) as Econodynamics. The Theory of Social Production.
  6. 1 2 3 V.N. Pokrovski, Energy in the theory of production, Energy 28 (2003) 769-788.
  7. V.N. Pokrovski, Productive energy in the US economy, Energy 32 (5)(2007) 816-822.
  8. Beaudreau B.C., Pokrovskii V.N. On the energy content of a money unit. {\it Physica A: Statistical Mechanics and its Applications}. 389 (13), 2597 - 2606 (2010).
  9. Harrod, R.F. An Essay in Dynamic Theory, Economic Journal, vol. 49 (March), pp. 14-23. (1939).
  10. Harrod, R.F. Towards a Dynamic Economics, Macmillan, London, 1948.
  11. Domar, E.D. Expansion and Employment, American Economic Review, vol. 37 (1), pp. 343-355 (1947).
  12. Domar, E.D. et al. 'Economic Growth and Productivity in the United States, Canada, United Kingdom, Germany and Japan in the Post-War Period', Review Economic Statistics, vol. 46 (1), pp. 33-40 (1964).
  13. Blanchard, O.J. and Fisher, S. Lectures on Macroeconomics, MIT Press, Gambridge MA, 1989.
  14. Scott, M.FG. A New View of Economic Growth, Clarendon Press, Oxford, 1989.