Tennenbaum's theorem

Last updated

Tennenbaum's theorem, named for Stanley Tennenbaum who presented the theorem in 1959, is a result in mathematical logic that states that no countable nonstandard model of first-order Peano arithmetic (PA) can be recursive (Kaye 1991:153ff).

Contents

Recursive structures for PA

A structure in the language of PA is recursive if there are recursive functions and from to , a recursive two-place relation <M on , and distinguished constants such that

where indicates isomorphism and is the set of (standard) natural numbers. Because the isomorphism must be a bijection, every recursive model is countable. There are many nonisomorphic countable nonstandard models of PA.

Statement of the theorem

Tennenbaum's theorem states that no countable nonstandard model of PA is recursive. Moreover, neither the addition nor the multiplication of such a model can be recursive.

Proof sketch

This sketch follows the argument presented by Kaye (1991). The first step in the proof is to show that, if M is any countable nonstandard model of PA, then the standard system of M (defined below) contains at least one nonrecursive set S. The second step is to show that, if either the addition or multiplication operation on M were recursive, then this set S would be recursive, which is a contradiction.

Through the methods used to code ordered tuples, each element can be viewed as a code for a set of elements of M. In particular, if we let be the ith prime in M, then . Each set will be bounded in M, but if x is nonstandard then the set may contain infinitely many standard natural numbers. The standard system of the model is the collection . It can be shown that the standard system of any nonstandard model of PA contains a nonrecursive set, either by appealing to the incompleteness theorem or by directly considering a pair of recursively inseparable r.e. sets (Kaye 1991:154). These are disjoint r.e. sets so that there is no recursive set with and .

For the latter construction, begin with a pair of recursively inseparable r.e. sets A and B. For natural number x there is a y such that, for all i < x, if then and if then . By the overspill property, this means that there is some nonstandard x in M for which there is a (necessarily nonstandard) y in M so that, for every with , we have

Let be the corresponding set in the standard system of M. Because A and B are r.e., one can show that and . Hence S is a separating set for A and B, and by the choice of A and B this means S is nonrecursive.

Now, to prove Tennenbaum's theorem, begin with a nonstandard countable model M and an element a in M so that is nonrecursive. The proof method shows that, because of the way the standard system is defined, it is possible to compute the characteristic function of the set S using the addition function of M as an oracle. In particular, if is the element of M corresponding to 0, and is the element of M corresponding to 1, then for each we can compute (i times). To decide if a number n is in S, first compute p, the nth prime in . Then, search for an element y of M so that

for some . This search will halt because the Euclidean algorithm can be applied to any model of PA. Finally, we have if and only if the i found in the search was 0. Because S is not recursive, this means that the addition operation on M is nonrecursive.

A similar argument shows that it is possible to compute the characteristic function of S using the multiplication of M as an oracle, so the multiplication operation on M is also nonrecursive (Kaye 1991:154).

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

<span class="mw-page-title-main">Modular arithmetic</span> Computation modulo a fixed integer

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

<span class="mw-page-title-main">Nonstandard analysis</span> Calculus using a logically rigorous notion of infinitesimal numbers

The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta procedures rather than infinitesimals. Nonstandard analysis instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers.

Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

In computability theory, Rice's theorem states that all non-trivial semantic properties of programs are undecidable. A semantic property is one about the program's behavior, unlike a syntactic property. A property is non-trivial if it is neither true for every partial computable function, nor false for every partial computable function.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory.

In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0.

In mathematical logic, an arithmetical set is a set of natural numbers that can be defined by a formula of first-order Peano arithmetic. The arithmetical sets are classified by the arithmetical hierarchy.

In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by R. M. Robinson in 1950. It is usually denoted Q. Q is almost PA without the axiom schema of mathematical induction. Q is weaker than PA but it has the same language, and both theories are incomplete. Q is important and interesting because it is a finitely axiomatized fragment of PA that is recursively incompletable and essentially undecidable.

In mathematical logic, an ω-consistenttheory is a theory that is not only (syntactically) consistent, but also avoids proving certain infinite combinations of sentences that are intuitively contradictory. The name is due to Kurt Gödel, who introduced the concept in the course of proving the incompleteness theorem.

Constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

In mathematical logic, a non-standard model of arithmetic is a model of (first-order) Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements of any model of Peano arithmetic are linearly ordered and possess an initial segment isomorphic to the standard natural numbers. A non-standard model is one that has additional elements outside this initial segment. The construction of such models is due to Thoralf Skolem (1934).

In constructive mathematics, a collection is subcountable if there exists a partial surjection from the natural numbers onto it. This may be expressed as

In mathematics, particularly set theory, non-recursive ordinals are large countable ordinals greater than all the recursive ordinals, and therefore can not be expressed using ordinal collapsing functions.

In mathematical logic, true arithmetic is the set of all true first-order statements about the arithmetic of natural numbers. This is the theory associated with the standard model of the Peano axioms in the language of the first-order Peano axioms. True arithmetic is occasionally called Skolem arithmetic, though this term usually refers to the different theory of natural numbers with multiplication.

Stanley Tennenbaum was an American mathematician who contributed to the field of logic. In 1959, he published Tennenbaum's theorem, which states that no countable nonstandard model of Peano arithmetic (PA) can be recursive, i.e. the operations + and × of a nonstandard model of PA are not recursively definable in the + and × operations of the standard model. He was a Professor at Yeshiva University in the 1960s.

References