Textual case-based reasoning

Last updated

Textual case-based reasoning (TCBR) is a subtopic of case-based reasoning, in short CBR, a popular area in artificial intelligence. CBR suggests the ways to use past experiences to solve future similar problems, requiring that past experiences be structured in a form similar to attribute-value pairs. This leads to the investigation of textual descriptions for knowledge exploration whose output will be, in turn, used to solve similar problems. [1]

Contents

Subareas

Textual case-base reasoning research has focused on:

Related Research Articles

Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.

Logic programming is a programming paradigm which is largely based on formal logic. Any program written in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, answer set programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:

<span class="mw-page-title-main">Thought</span> Cognitive process independent of the senses

In their most common sense, the terms thought and thinking refer to conscious cognitive processes that can happen independently of sensory stimulation. Their most paradigmatic forms are judging, reasoning, concept formation, problem solving, and deliberation. But other mental processes, like considering an idea, memory, or imagination, are also often included. These processes can happen internally independent of the sensory organs, unlike perception. But when understood in the widest sense, any mental event may be understood as a form of thinking, including perception and unconscious mental processes. In a slightly different sense, the term thought refers not to the mental processes themselves but to mental states or systems of ideas brought about by these processes.

<span class="mw-page-title-main">Analogy</span> Cognitive process of transferring information or meaning from a particular subject to another

Analogy is a cognitive process of transferring information or meaning from a particular subject to another, or a linguistic expression corresponding to such a process. In a narrower sense, analogy is an inference or an argument from one particular to another particular, as opposed to deduction, induction, and abduction, in which at least one of the premises, or the conclusion, is general rather than particular in nature. The term analogy can also refer to the relation between the source and the target themselves, which is often a similarity, as in the biological notion of analogy.

<span class="mw-page-title-main">Case-based reasoning</span> Process of solving new problems based on the solutions of similar past problems

In artificial intelligence and philosophy, case-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems.

<span class="mw-page-title-main">Problem of induction</span> Question of whether inductive reasoning leads to definitive knowledge

First formulated by David Hume, the problem of induction questions our reasons for believing that the future will resemble the past, or more broadly it questions predictions about unobserved things based on previous observations. This inference from the observed to the unobserved is known as "inductive inferences", and Hume, while acknowledging that everyone does and must make such inferences, argued that there is no non-circular way to justify them, thereby undermining one of the Enlightenment pillars of rationality.

In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems, symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems. The Symbolic AI paradigm led to seminal ideas in search, symbolic programming languages, agents, multi-agent systems, the semantic web, and the strengths and limitations of formal knowledge and reasoning systems.

In artificial intelligence (AI), commonsense reasoning is a human-like ability to make presumptions about the type and essence of ordinary situations humans encounter every day. These assumptions include judgments about the nature of physical objects, taxonomic properties, and peoples' intentions. A device that exhibits commonsense reasoning might be capable of drawing conclusions that are similar to humans' folk psychology and naive physics.

A knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.

<span class="mw-page-title-main">Inquiry</span> Any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem

An inquiry is any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem. A theory of inquiry is an account of the various types of inquiry and a treatment of the ways that each type of inquiry achieves its aim.

<span class="mw-page-title-main">Outline of thought</span> Overview of and topical guide to thought

The following outline is provided as an overview of and topical guide to thought (thinking):

Computer audition (CA) or machine listening is general field of study of algorithms and systems for audio understanding by machine. Since the notion of what it means for a machine to "hear" is very broad and somewhat vague, computer audition attempts to bring together several disciplines that originally dealt with specific problems or had a concrete application in mind. The engineer Paris Smaragdis, interviewed in Technology Review, talks about these systems --"software that uses sound to locate people moving through rooms, monitor machinery for impending breakdowns, or activate traffic cameras to record accidents."

<span class="mw-page-title-main">Visual analytics</span>

Visual analytics is an outgrowth of the fields of information visualization and scientific visualization that focuses on analytical reasoning facilitated by interactive visual interfaces.

<span class="mw-page-title-main">Neo-Piagetian theories of cognitive development</span>

Neo-Piagetian theories of cognitive development criticize and build upon Jean Piaget's theory of cognitive development.

Dr. Robert L. Simpson Jr. is a computer scientist whose primary research interest is applied artificial intelligence. He served as Chief Scientist at Applied Systems Intelligence, Inc. (ASI) working with Dr. Norman D. Geddes, CEO. Dr. Simpson was responsible for the creation of the ASI core technology PreAct. ASI has since changed its name to Veloxiti Inc.

In information technology a reasoning system is a software system that generates conclusions from available knowledge using logical techniques such as deduction and induction. Reasoning systems play an important role in the implementation of artificial intelligence and knowledge-based systems.

HYPO is a computer program that models reasoning with cases and hypotheticals in the legal domain. It is the first of its kind and the most sophisticated of the case-based legal reasoners, which was designed by Ashley for his Ph.D dissertation in 1987 at the University of Massachusetts Amherst under the supervision of Rissland. HYPO's design represents a hybrid generalization/comparative evaluation method appropriate for a domain with a weak analytical theory and applies to tasks that rarely involve just one right answer. The domain covers US trade secret law, and is substantially a "common law" domain. Since the Anglo-American law is operated under the doctrine of precedent, the definitive way of interpreting problems is of necessity and case-based. Thus, HYPO did not involve the analysis of a Statute, as required by the PROLOG program. Rissland and Ashley (1987) envisioned HYPO as employing the key tasks performed by lawyers when analyzing case law for precedence to generate arguments for the prosecution or the defence.

A legal expert system is a domain-specific expert system that uses artificial intelligence to emulate the decision-making abilities of a human expert in the field of law. Legal expert systems employ a rule base or knowledge base and an inference engine to accumulate, reference and produce expert knowledge on specific subjects within the legal domain.

The Programme for the International Assessment of Adult Competencies (PIAAC) is a worldwide study by the Organisation for Economic Co-operation and Development (OECD) in 24 countries of cognitive and workplace skills. The main aim is to be able to assess the skills of literacy, numeracy and problem solving in technology-rich environments, and use the collected information to help countries develop ways to further improve these skills. The focus is on the working-age population. The first data was released on October 8, 2013. A new PIAAC survey is expected to be published in 2021/2022.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

References

  1. 1 2 3 4 5 Weber, R.O.; K., Ashley; S., Brüninghaus (2005). "Textual Case-Based Reasoning". Knowledge Engineering Review. 20 (3): 255–260. CiteSeerX   10.1.1.91.9022 . doi:10.1017/S0269888906000713. S2CID   11502038.