Thin plate energy functional

Last updated

The exact thin plate energy functional (TPEF) for a function is

Contents

where and are the principal curvatures of the surface mapping at the point [1] [2] This is the surface integral of hence the in the integrand.

Minimizing the exact thin plate energy functional would result in a system of non-linear equations. So in practice, an approximation that results in linear systems of equations is often used. [1] [3] [4] The approximation is derived by assuming that the gradient of is 0. At any point where the first fundamental form of the surface mapping is the identity matrix and the second fundamental form is

.

We can use the formula for mean curvature [5] to determine that and the formula for Gaussian curvature [5] (where and are the determinants of the second and first fundamental forms, respectively) to determine that Since and [5] the integrand of the exact TPEF equals The expressions we just computed for the mean curvature and Gaussian curvature as functions of partial derivatives of show that the integrand of the exact TPEF is

So the approximate thin plate energy functional is

Rotational invariance

Rotating (x,y) by theta about z-axis to (X,Y) Rotated coords1.png
Rotating (x,y) by theta about z-axis to (X,Y)
Original surface with point (x,y) Rotated coords plus surface1 1.png
Original surface with point (x,y)
Rotated surface with rotated point (X,Y) Rotated coords plus surface2 1.png
Rotated surface with rotated point (X,Y)

The TPEF is rotationally invariant. This means that if all the points of the surface are rotated by an angle about the -axis, the TPEF at each point of the surface equals the TPEF of the rotated surface at the rotated The formula for a rotation by an angle about the -axis is

 

 

 

 

(1)

The fact that the value of the surface at equals the value of the rotated surface at the rotated is expressed mathematically by the equation

where is the inverse rotation, that is, So and the chain rule implies

 

 

 

 

(2)

In equation ( 2 ), means means means and means Equation ( 2 ) and all subsequent equations in this section use non-tensor summation convention, that is, sums are taken over repeated indices in a term even if both indices are subscripts. The chain rule is also needed to differentiate equation ( 2 ) since is actually the composition

.

Swapping the index names and yields

 

 

 

 

(3)

Expanding the sum for each pair yields

Computing the TPEF for the rotated surface yields

 

 

 

 

(4)

Inserting the coefficients of the rotation matrix from equation ( 1 ) into the right-hand side of equation ( 4 ) simplifies it to

Data fitting

The approximate thin plate energy functional can be used to fit B-spline surfaces to scattered 1D data on a 2D grid (for example, digital terrain model data). [6] [3] Call the grid points for (with and ) and the data values In order to fit a uniform B-spline to the data, the equation

 

 

 

 

(5)

(where is the "smoothing parameter") is minimized. Larger values of result in a smoother surface and smaller values result in a more accurate fit to the data. The following images illustrate the results of fitting a B-spline surface to some terrain data using this method.

The thin plate smoothing spline also minimizes equation ( 5 ), but it is much more expensive to compute than a B-spline and not as smooth (it is only at the "centers" and has unbounded second derivatives there).

Related Research Articles

Curvature Measure of the property of a curve or a surface to be "bended"

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

Paraboloid Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

Hookes law Principle of physics that states that the force (F) needed to extend or compress a spring by some distance X scales linearly with respect to that distance

Hooke's law is a law of physics that states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Poissons ratio Measure of the Poisson effect

In materials science and solid mechanics, Poisson's ratio (nu) is a measure of the Poisson effect, the deformation of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2-0.3. The ratio is named after the French mathematician and physicist Siméon Poisson.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

Gaussian curvature Product of the principal curvatures of a surface

In differential geometry, the Gaussian curvature or Gauss curvatureΚ of a surface at a point is the product of the principal curvatures, κ1 and κ2, at the given point:

In mathematics, the mean curvature of a surface is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.

Total least squares

In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models.

Osculating circle Circle of immediate corresponding curvature of a curve at a point

In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans by Leibniz.

A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.

In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u. The independent variables (x,y) vary over a given domain D of R2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.

In applied mathematics, polyharmonic splines are used for function approximation and data interpolation. They are very useful for interpolating and fitting scattered data in many dimensions. Special cases include thin plate splines and natural cubic splines in one dimension.

Implicit curve Plane curve defined by an implicit equation

In mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation . In general, every implicit curve is defined by an equation of the form

Timoshenko–Ehrenfest beam theory

The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest early in the 20th century. The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high-frequency excitation when the wavelength approaches the thickness of the beam. The resulting equation is of 4th order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted eigenfrequencies for a given set of boundary conditions. The latter effect is more noticeable for higher frequencies as the wavelength becomes shorter, and thus the distance between opposing shear forces decreases.

Gravitational lensing formalism

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

Mild-slope equation Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

Miniaturizing components has always been a primary goal in the semiconductor industry because it cuts production cost and lets companies build smaller computers and other devices. Miniaturization, however, has increased dissipated power per unit area and made it a key limiting factor in integrated circuit performance. Temperature increase becomes relevant for relatively small-cross-sections wires, where it may affect normal semiconductor behavior. Besides, since the generation of heat is proportional to the frequency of operation for switching circuits, fast computers have larger heat generation than slow ones, an undesired effect for chips manufacturers. This article summaries physical concepts that describe the generation and conduction of heat in an integrated circuit, and presents numerical methods that model heat transfer from a macroscopic point of view.

Bending of plates

Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory. The stresses in the plate can be calculated from these deflections. Once the stresses are known, failure theories can be used to determine whether a plate will fail under a given load.

Causal fermion systems

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

References

  1. 1 2 Greiner, Günther (1994). "Variational Design and Fairing of Spline Surfaces" (PDF). Eurographics '94. Retrieved January 3, 2016.
  2. Moreton, Henry P. (1992). "Functional Optimization for Fair Surface Design" (PDF). Computer Graphics. Retrieved January 4, 2016.
  3. 1 2 Eck, Matthias (1996). "Automatic reconstruction of B-splines surfaces of arbitrary topological type" (PDF). Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series. Retrieved January 3, 2016.
  4. Halstead, Mark (1993). "Efficient, Fair Interpolation using Catmull-Clark Surfaces" (PDF). Proceedings of the 20th annual conference on Computer graphics and interactive techniques. Retrieved January 4, 2016.
  5. 1 2 3 Kreyszig, Erwin (1991). Differential Geometry . Mineola, New York: Dover. pp.  131. ISBN   0-486-66721-9.
  6. Hjelle, Oyvind (2005). "Multilevel Least Squares Approximation of Scattered Data over Binary Triangulations" (PDF). Computing and Visualization in Science. Retrieved January 14, 2016.