Time-place learning (TPL) is the process by which animals link events (e.g. finding food, encountering a predator) with both the location and time of occurrence. [1] It enables them to decide which locations to visit or to avoid based on previous experience and knowledge of the current time of day. TPL presumably allows animals to maximize their chances of finding resources (food, mates) and avoiding predators, increasing survival chances. TPL requires spatial memory and a sense of time. The latter may be based on external time-cues (Zeitgebers), or internally generated circadian rhythms ("biological clock"). TPL may fundamentally underlie episodic memory.
The first evidence for time-place learning in animals came from studies in the 1930s on honeybees, which could be trained to visit two different feeders, one in the morning and the other in the afternoon. [2] Subsequent work in the 1980s showed that only a few individuals in the colony were able to learn that task, and did so with more precision for the morning than for the afternoon feeding. [3] Honeybees can also be trained to recognize one visual pattern to obtain food in the morning, and another pattern to get food in the afternoon; when presented with both patterns simultaneously, the same bees choose the "morning" pattern in the morning and the "afternoon" pattern in the afternoon. [4]
The Neotropical ant Ectatomma ruidum is also capable of time-place learning. They can learn to visit a feeding site in the morning, another one at midday, and a third one in the afternoon. They follow this spatio-temporal pattern even when food is withheld on test days. They then stay at the feeder for the approximate duration that food was normally available before moving on, at the right time, to the next feeder. This shows that the ants do not rely on direct cues from the food itself, but use instead a learned association between daily time and place. [5]
In fish, time-place learning has been demonstrated in the golden shiner [6] and the inanga. [7] Golden shiners could be taught to seek food in one half of their aquarium in the morning, in the other half at midday, and back to the first half in the afternoon. They maintained this spatio-temporal pattern even when food was withheld on test days. The spatio-temporal pattern also shifted gradually over several days when the day-night cycle was suddenly shifted early by 6 h, as is typical of circadian rhythms.
Inangas could be taught to seek food in one half of their aquarium in the morning and in the other half in the afternoon, even on test days when food was withheld. However, they could not be taught to avoid one half in the morning and the other half in the afternoon in response to simulated attacks by a heron.
A test of time-place learning with young convict cichlids yielded negative results, for two as well as four time-place associations per day. [8] This was attributed to a low cost of travel between the aquarium corners in which the food was delivered, such that fish could quickly sample all corners sequentially without having to learn which exact corner gave food.
In birds, time-place learning has been confirmed in garden warblers, [9] [10] [11] starlings, [12] weavers, [13] and pigeons. [14] Garden warblers could learn to visit four rooms inside a large aviary, one during each quarter of a day. It took them only 11 days to learn, with 70% accuracy, to visit the correct room at the correct daily time to get food. The spatio-temporal pattern of visits was then maintained even when food was made available in all rooms at all times. As with circadian rhythms of activity, the spatio-temporal pattern of room visits shifted gradually over several days following a 6-h advance of the day-night cycle, and it ran freely with a non-24 h periodicity for up to 6 days when the birds were placed under constant 24-h dim light and constant food availability. Starlings can show similar patterns, with free-runs up to 11 days in constant dim light.
The insectivorous weaver bird Ploceus bicolor can also learn to associate four feeding rooms with four feeding times, and it maintains the correct spatio-temporal pattern even when one of the rooms is blocked on test days (the bird then waits for the next feeding time and visits the appropriate room for that time); however, room blocking disrupts the spatio-temporal pattern in the granivorous weaver bird Euplectes hordaceus , which suggests that time-place learning may be stronger in species for which food in nature is more likely to vary spatio-temporally (as is the case for insects, as opposed to grain).
Finally, pigeons can learn to peck one key to get food in the morning, and another key in the afternoon, and they maintain this pattern for four days in constant light.
Laboratory rats have been taught to enter one arm of a maze in the morning and another in the afternoon, though only 63% of the animals could attain the criterion of nine correct choices over ten consecutive trials. [15] In a protocol not based on food acquisition, rats swimming in a tank could learn the location of one resting platform in the morning, and another in the afternoon. [16] [17] However, other studies have failed to find evidence of time-place learning in rats. Outcomes of time-place tests with rats seem to depend on what behaviors are measured to assess learning, and on the (sometimes too low) costs of not performing well. [18]
Faced with a choice of entering one of three arms at three different times of day, laboratory mice can learn which arm to enter at the correct time, be it to obtain food (a positive reinforcement) or to avoid receiving a mild electric shock (a negative reinforcement). [19] [20]
Jet lag, desynchronosis, or circadian dysrhythmia, is a temporary physiological condition that occurs when a person's circadian rhythm is out of sync with the time zone they are in, and is a typical result from travelling rapidly across multiple time zones. For example, someone travelling from New York to London, i.e. from west to east, feels as if the time were five hours earlier than local time, and someone travelling from London to New York, i.e. from east to west, feels as if the time were five hours later than local time. The phase shift when travelling from east to west is referred to as phase-delay of the circadian cycle, whereas going west to east is phase-advance of the cycle. Most travellers find that it is harder to adjust time zones when travelling east. Jet lag was previously classified as a circadian rhythm sleep disorder.
A circadian rhythm, or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism and responds to the environment. Circadian rhythms are regulated by a circadian clock whose primary function is to rhythmically co-ordinate biological processes so they occur at the correct time to maximize the fitness of an individual. Circadian rhythms have been widely observed in animals, plants, fungi and cyanobacteria and there is evidence that they evolved independently in each of these kingdoms of life.
Bee learning and communication includes cognitive and sensory processes in all kinds of bees, that is the insects in the seven families making up the clade Anthophila. Some species have been studied more extensively than others, in particular Apis mellifera, or European honey bee. Color learning has also been studied in bumblebees.
Foraging is searching for wild food resources. It affects an animal's fitness because it plays an important role in an animal's ability to survive and reproduce. Foraging theory is a branch of behavioral ecology that studies the foraging behavior of animals in response to the environment where the animal lives.
In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event. Spatial memory is necessary for orientation in space. Spatial memory can also be divided into egocentric and allocentric spatial memory. A person's spatial memory is required to navigate in a familiar city. A rat's spatial memory is needed to learn the location of food at the end of a maze. In both humans and animals, spatial memories are summarized as a cognitive map.
Waggle dance is a term used in beekeeping and ethology for a particular figure-eight dance of the honey bee. By performing this dance, successful foragers can share information about the direction and distance to patches of flowers yielding nectar and pollen, to water sources, or to new nest-site locations with other members of the colony.
Diurnality is a form of plant and animal behavior characterized by activity during daytime, with a period of sleeping or other inactivity at night. The common adjective used for daytime activity is "diurnal". The timing of activity by an animal depends on a variety of environmental factors such as the temperature, the ability to gather food by sight, the risk of predation, and the time of year. Diurnality is a cycle of activity within a 24-hour period; cyclic activities called circadian rhythms are endogenous cycles not dependent on external cues or environmental factors except for a zeitgeber. Animals active during twilight are crepuscular, those active during the night are nocturnal and animals active at sporadic times during both night and day are cathemeral.
Latent learning is the subconscious retention of information without reinforcement or motivation. In latent learning, one changes behavior only when there is sufficient motivation later than when they subconsciously retained the information.
In psychology and neuroscience, time perception or chronoception is the subjective experience, or sense, of time, which is measured by someone's own perception of the duration of the indefinite and unfolding of events. The perceived time interval between two successive events is referred to as perceived duration. Though directly experiencing or understanding another person's perception of time is not possible, perception can be objectively studied and inferred through a number of scientific experiments. Some temporal illusions help to expose the underlying neural mechanisms of time perception.
A chronotype is the behavioral manifestation of underlying circadian rhythm's myriad of physical processes. A person's chronotype is the propensity for the individual to sleep at a particular time during a 24-hour period. Eveningness and morningness are the two extremes with most individuals having some flexibility in the timing of their sleep period. However, across development there are changes in the propensity of the sleep period with pre-pubescent children preferring an advanced sleep period, adolescents preferring a delayed sleep period and many elderly preferring an advanced sleep period.
Animal psychopathology is the study of mental or behavioral disorders in non-human animals.
Light effects on circadian rhythm are the response of circadian rhythms to light.
Euhirudinea, the true leeches, are an infraclass of the Hirudinea.
Task allocation and partitioning is the way that tasks are chosen, assigned, subdivided, and coordinated within a colony of social insects. Task allocation and partitioning gives rise to the division of labor often observed in social insect colonies, whereby individuals specialize on different tasks within the colony. Communication is closely related to the ability to allocate tasks among individuals within a group. This entry focuses exclusively on social insects. For information on human task allocation and partitioning, see division of labour, task analysis, and workflow.
PNU-99,194(A) (or U-99,194(A)) is a drug which acts as a moderately selective D3 receptor antagonist with ~15-30-fold preference for D3 over the D2 subtype. Though it has substantially greater preference for D3 over D2, the latter receptor does still play some role in its effects, as evidenced by the fact that PNU-99,194 weakly stimulates both prolactin secretion and striatal dopamine synthesis, actions it does not share with the more selective (100-fold) D3 receptor antagonists S-14,297 and GR-103,691.
Episodic-like memory is the memory system in animals that is comparable to human episodic memory. The term was first described by Clayton & Dickinson referring to an animal's ability to encode and retrieve information about 'what' occurred during an episode, 'where' the episode took place, and 'when' the episode happened. This ability in animals is considered 'episodic-like' because there is currently no way of knowing whether or not this form of remembering is accompanied by conscious recollection—a key component of Endel Tulving's original definition of episodic memory.
Social learning refers to learning that is facilitated by observation of, or interaction with, another animal or its products. Social learning has been observed in a variety of animal taxa, such as insects, fish, birds, reptiles, amphibians and mammals.
Cognitive bias in animals is a pattern of deviation in judgment, whereby inferences about other animals and situations may be affected by irrelevant information or emotional states. It is sometimes said that animals create their own "subjective social reality" from their perception of the input. In humans, for example, an optimistic or pessimistic bias might affect one's answer to the question "Is the glass half empty or half full?"
Insect cognition describes the mental capacities and study of those capacities in insects. The field developed from comparative psychology where early studies focused more on animal behavior. Researchers have examined insect cognition in bees, fruit flies, and wasps.
The food-entrainable oscillator (FEO) is a circadian clock that can be entrained by varying the time of food presentation. It was discovered when a rhythm was found in rat activity. This was called food anticipatory activity (FAA), and this is when the wheel-running activity of mice decreases after feeding, and then rapidly increases in the hours leading up to feeding. FAA appears to be present in non-mammals (pigeons/fish), but research heavily focuses on its presence in mammals. This rhythmic activity does not require the suprachiasmatic nucleus (SCN), the central circadian oscillator in mammals, implying the existence of an oscillator, the FEO, outside of the SCN, but the mechanism and location of the FEO is not yet known. There is ongoing research to investigate if the FEO is the only non-light entrainable oscillator in the body.