Timothy S. Fisher

Last updated

Timothy S. Fisher (born 1969) is an American educator, engineer and expert in the application of nanotechnologies. [1] He is a former professor of mechanical engineering at the School of Mechanical Engineering, Purdue University and Director, Nanoscale Transport Research Group-Purdue University. He currently teaches at the University of California, Los Angeles. He took his Bachelor of Science and doctorate at Cornell University in 1991 and 1998, respectively. Fisher became the chair of mechanical and aerospace engineering department at University of California, Los Angeles, starting July 1, 2018.

Contents

Expertise

Fisher studies the impacts of nanotechnology development and its implications for energy conversions and efficiency. [2] His own, individual academic work concentrates on nanoscale energy transport and conversion, synthesis of nanomaterials, cooling of microelectronics and microfluids. The group he directs also studies the transport and conversion of energy carried by electrons, phonons, and photons. Research focus includes applications in clean energy (e.g., direct energy conversion, hydrogen storage) and major industrial segments (e.g., micro/nanoelectronics, sensors).

Fisher is known for the Fisher Query in nanotechnology development, namely, “. . . before we can even think about using nanotubes in electronics, we have to learn how to put them where we want them.” [3]

Inventor

Fisher was a member of the Purdue University engineering research team which developed a biosensor for detecting blood glucose and other biological molecules using hollow structures called single-wall carbon nanotubes anchored to gold-coated "nanocubes." The device resembled a cube-shaped tetherball. Each tetherball is a sensor. A nanotube anchors each tetherball to electronic circuitry which acts as both a tether and ultrathin wire to conduct electrical signals. [4]

Sample Publications

Association

Fisher joined the Phi Kappa Psi fraternity at Cornell University, and through that organization, the Irving Literary Society. [5]

Related Research Articles

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers.

<span class="mw-page-title-main">Nanotechnology</span> Field of applied science addressing the control of matter on atomic and (supra)molecular scales

Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size.

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

<span class="mw-page-title-main">Nanomaterials</span> Materials whose granular size lies between 1 to 100 nm

Nanomaterials describe, in principle, materials of which a single unit is sized between 1 and 100 nm.

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires or advanced molecular electronics.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

The following outline is provided as an overview of and topical guide to nanotechnology:

<span class="mw-page-title-main">Nanomechanics</span>

Nanomechanics is a branch of nanoscience studying fundamental mechanical properties of physical systems at the nanometer scale. Nanomechanics has emerged on the crossroads of biophysics, classical mechanics, solid-state physics, statistical mechanics, materials science, and quantum chemistry. As an area of nanoscience, nanomechanics provides a scientific foundation of nanotechnology.

Polymer nanocomposites (PNC) consist of a polymer or copolymer having nanoparticles or nanofillers dispersed in the polymer matrix. These may be of different shape, but at least one dimension must be in the range of 1–50 nm. These PNC's belong to the category of multi-phase systems that consume nearly 95% of plastics production. These systems require controlled mixing/compounding, stabilization of the achieved dispersion, orientation of the dispersed phase, and the compounding strategies for all MPS, including PNC, are similar. Alternatively, polymer can be infiltrated into 1D, 2D, 3D preform creating high content polymer nanocomposites.

Green nanotechnology refers to the use of nanotechnology to enhance the environmental sustainability of processes producing negative externalities. It also refers to the use of the products of nanotechnology to enhance sustainability. It includes making green nano-products and using nano-products in support of sustainability.

<span class="mw-page-title-main">Nanonetwork</span> A computing network of nanomachines, at nanoscale

A nanonetwork or nanoscale network is a set of interconnected nanomachines, which are able to perform only very simple tasks such as computing, data storing, sensing and actuation. Nanonetworks are expected to expand the capabilities of single nanomachines both in terms of complexity and range of operation by allowing them to coordinate, share and fuse information. Nanonetworks enable new applications of nanotechnology in the biomedical field, environmental research, military technology and industrial and consumer goods applications. Nanoscale communication is defined in IEEE P1906.1.

The nano-tetherball sensor is one of newly discovered methods in detecting glucose in the human body. The nano-tetherball sensor for glucose has attracted attention of diabetic medical community due to its methods and high sensitivity in performance. The machine’s name comes from the fact that its design is similar to a small cube-shaped tetherball. Nano machines have been in the biosensor industry for more than two decades, and they have performed a number of different beneficial roles for diabetic patients. Despite the many opto/electronic mechanisms on the market, from a physical and chemical point of view, the nanomachine optical fiber provides many advantages over the other types.

<span class="mw-page-title-main">Nanoscale plasmonic motor</span>

A nanoscale plasmonic motor is a type of nanomotor, converting light energy to rotational motion at nanoscale. It is constructed from pieces of gold sheet in a gammadion shape, embedded within layers of silica. When irradiated with light from a laser, the gold pieces rotate. The functioning is explained by the quantum concept of the plasmon. This type of nanomotor is much smaller than other types, and its operation can be controlled by varying the frequency of the incident light.

Mark S. Lundstrom is an American electrical engineering researcher, educator, and author. He is known for contributions to the theory, modeling, and understanding of semiconductor devices, especially nanoscale transistors, and as the creator of the nanoHUB, a major online resource for nanotechnology. Lundstrom is Don and Carol Scifres Distinguished Professor of Electrical and Computer Engineering and in 2020 served as Acting Dean of the College of Engineering at Purdue University, in West Lafayette, Indiana.

Alan T. Charlie Johnson is an American physicist, professor of Physics and Astronomy at the University of Pennsylvania, and the Director of the Nano/Bio Interface Center at the University of Pennsylvania.

Caterina Ducati is a Professor of Nanomaterials in the Department of Materials at the University of Cambridge. She serves as Director of the University of Cambridge Master's programme in Micro- and Nanotechnology Enterprise as well as leading teaching in the Nanotechnology Doctoral Training Centre.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

Ramakrishna Podila is an Indian-born American physicist and nanomaterials researcher. He is currently an Associate Professor of Physics in the Department of Physics and Astronomy at Clemson University and is the director of the Clemson Nano-bio lab. He is known for his interdisciplinary research at the interface of physics, biology, and nanoscience. His lab integrates the principles of condensed matter physics, optical spectroscopy, and physiological chemistry to understand physics at the nanoscale and nano-bio interfaces.

References

  1. John F. Mongillo, 'Nano Interview: Professor Timothy Sands, PhD. Purdue University' in "Carbon Nanotubes, Nanowires and Nanocrystals," Nanotechnology 101 (Greenwood Press 2007) at 79.(identifying Professor Timothy S. Fisher as a subject-matter expert on carbon nanotubes); National Academy of Engineering, Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2007 Symposium (The National Academies Press)(Washington, D.C. 2008)189
  2. Wade Adams & Amy Myers Jaffe, Nanotechnology and Our Energy Challenge, Nanotechnology as a Tool for Sustainability in Environmental Nanotechnology: Applications and Impacts of Nanomaterials 22 (Mark R. Wiesner & Jean-Yves Bottero, eds.)(McGraw Hill 2007).
  3. Reiner Hartenstein and TU Kaiserslauten, Reconfigurable Computing in Designing Embedded Processors: A Low Power Perspective (Springer Publishing 2007) (Jorg Henkel and Sri Parameswaran, eds.) at 476.
  4. Nano-tetherball biosensor precisely detects glucose, Nanotechwire.com (Jan. 22, 2009) . Archived 2011-07-14 at the Wayback Machine
  5. Cornell University Residence Plan of 1966, Schedule I, Appendix A (May 3, 1966)(see sixth page of document noting the relationship between Phi Kappa Psi and the Irving Literary Society)); see also’’, List of Phi Kappa Psi/Irving Literary Society Members (Aug. 18, 2011).