Tobacco mosaic virus memory

Last updated

The Tobacco Mosaic Virus (TMV) is an extremely common helical virus, with a positive sense RNA strand. In recent years, researchers have found that this virus can be utilized to create nano wires using platinum nanoparticles. Tseng et al. [1] have discovered that by soaking the virus in platinum nanoparticles, and then using a reducing agent was used to ionize the platinum nanoparticles so that they formed clusters on the protein coat of the viruses. When these TMV-Pt conjugated systems are spun onto a glass plate, they can be probed by electric current into certain positions that mimic a simple on/off switch, and therefore can be used to create I/0 data encoding. The rigid structure of the virus holds the nano particle in the desired on or off position, making it ideal for creating digital memory. It was reported by Tseng et al. that the on/off characteristics of the TMV-Pt structures was disrupted at temperatures greater than 318 K. Continuing research is being conducted to further explore the possibility of bio-inorganic nano devices.

Related Research Articles

Nanotechnology is manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size.

Nanomedicine medical application of nanotechnology

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials.

<i>Tobacco mosaic virus</i> Species of virus

Tobacco mosaic virus (TMV) is a positive-sense single-stranded RNA virus species in the genus Tobamovirus that infects a wide range of plants, especially tobacco and other members of the family Solanaceae. The infection causes characteristic patterns, such as "mosaic"-like mottling and discoloration on the leaves. TMV was the first virus to be discovered. Although it was known from the late 19th century that a non-bacterial infectious disease was damaging tobacco crops, it was not until 1930 that the infectious agent was determined to be a virus. It is the first pathogen identified as a virus.

Plant virus Virus that affects plants

Plant viruses are viruses that affect plants. Like all other viruses, plant viruses are obligate intracellular parasites that do not have the molecular machinery to replicate without a host. Plant viruses can be pathogenic to higher plants.

Adolf Mayer German agronomist

Adolf Eduard Mayer was a German agricultural chemist whose work on tobacco mosaic disease played an important role in the discovery of tobacco mosaic virus and viruses in general.

Nanobiotechnology Intersection of nanotechnology and biology

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

Nanochemistry is the combination of chemistry and nano science. Nanochemistry is associated with synthesis of building blocks which are dependent on size, surface, shape and defect properties. Nanochemistry is being used in chemical, materials and physical, science as well as engineering, biological and medical applications. Nanochemistry and other nanoscience fields have the same core concepts but the usages of those concepts are different.

<i>Cowpea mosaic virus</i> species of virus

Cowpea mosaic virus (CPMV) is a non-enveloped plant virus of the comovirus group. Infection of a susceptible cowpea leaf causes a "mosaic" pattern in the leaf, and results in high virus yields. Its genome consists of 2 molecules of positive-sense RNA which are separately encapsidated. Both RNA1 and RNA2 have a VPg at the 5'end, and polyadenylation at the 3' end. Genomic RNA1 and RNA2 are expressed by a polyprotein processing strategy. RNA1 encodes helicase, VPg, protease and RdRp. RNA2 encodes movement protein and coat protein. The virus particles are 28 nm in diameter and contain 60 copies each of a Large (L) and Small (S) coat protein. The structure is well characterised to atomic resolution, and the viral particles are thermostable. The identification of the virus is attributed to Lister and Thresh in 1955, but it is now known as a variant of the Sunn-hemp mosaic virus.

Nanotechnology is impacting the field of consumer goods, several products that incorporate nanomaterials are already in a variety of items; many of which people do not even realize contain nanoparticles, products with novel functions ranging from easy-to-clean to scratch-resistant. Examples of that car bumpers are made lighter, clothing is more stain repellant, sunscreen is more radiation resistant, synthetic bones are stronger, cell phone screens are lighter weight, glass packaging for drinks leads to a longer shelf-life, and balls for various sports are made more durable. Using nanotech, in the mid-term modern textiles will become "smart", through embedded "wearable electronics", such novel products have also a promising potential especially in the field of cosmetics, and has numerous potential applications in heavy industry. Nanotechnology is predicted to be a main driver of technology and business in this century and holds the promise of higher performance materials, intelligent systems and new production methods with significant impact for all aspects of society.

As the world's energy demand continues to grow, the development of more efficient and sustainable technologies for generating and storing energy is becoming increasingly important. According to Dr. Wade Adams from Rice University, energy will be the most pressing problem facing humanity in the next 50 years and nanotechnology has potential to solve this issue. Nanotechnology, a relatively new field of science and engineering, has shown promise to have a significant impact on the energy industry. Nanotechnology is defined as any technology that contains particles with one dimension under 100 nanometers in length. For scale, a single virus particle is about 100 nanometers wide.

Donald L. D. Caspar is an American structural biologist known for his works on the structures of biological molecules, particularly of the tobacco mosaic virus. He is an emeritus professor of biological science at the Institute of Molecular Biophysics, Florida State University, and an emeritus professor of biology at the Rosenstiel Basic Medical Sciences Research Center, Brandeis University. He has made significant scientific contributions in virus biology, X-ray, neutron and electron diffraction, and protein plasticity.

Platinum nanoparticle nanoparticle

Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium.

A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material.

Spherical nucleic acid

Spherical nucleic acids (SNAs) – defined as structures that are an arrangement of densely packed, highly oriented nucleic acids in a spherical geometry – were first introduced in 1996 by the Mirkin group at Northwestern University. The arrangement and orientation of one-dimensional linear nucleic acids within this three-dimensional framework results in new chemical, biological, and physical properties in the use of nucleic acids for intracellular gene regulation, molecular diagnostics, and materials synthesis applications.

Magnetic 3D bioprinting is a methodology that employs biocompatible magnetic nanoparticles to print cells into 3D structures or 3D cell cultures. In this process, cells are tagged with magnetic nanoparticles (nanoshuttle) that are used to render them magnetic. Once magnetic, these cells can be rapidly printed into specific 3D patterns using external magnetic forces that mimic tissue structure and function.

Satyabrata Sarkar,, is a scientist, investigating physiological phenomena in plants and then studying the structure and function of plant-pathogenic viruses in the Max-Planck-Institute for Biology in Tübingen and at the University of Hohenheim in Germany. Later on he was teaching Bengali language and literature in the Department of Indology of the University of Tübingen.

Iron–platinum nanoparticles are 3D superlattices composed of an approximately equal atomic ratio of Fe and Pt. Under standard conditions, FePt NPs exist in the face-centered cubic phase but can change to a chemically ordered face-centered tetragonal phase as a result of thermal annealing. Currently there are many synthetic methods such as water-in-oil microemulsion, one-step thermal synthesis with metal precursors, and exchanged-coupled assembly for making FePt NPs. An important property of FePt NPs is their superparamagnetic character below 10 nanometers. The superparamagnetism of FePt NPs has made them attractive candidates to be used as MRI/CT scanning agents and a high-density recording material.

Gold nanoparticles in chemotherapy

Gold nanoparticles in chemotherapy and radiotherapy is the use of colloidal gold in therapeutic treatments, often for cancer or arthritis. Gold nanoparticle technology shows promise in the advancement of cancer treatments. Some of the properties that gold nanoparticles possess, such as small size, non-toxicity and non-immunogenicity make these molecules useful candidates for targeted drug delivery systems. With tumor-targeting delivery vectors becoming smaller, the ability to by-pass the natural barriers and obstacles of the body becomes more probable. To increase specificity and likelihood of drug delivery, tumor specific ligands may be grafted onto the particles along with the chemotherapeutic drug molecules, to allow these molecules to circulate throughout the tumor without being redistributed into the body.

Viruses consist of a genome and a capsid; and some viruses are enveloped. Most virus capsids measure between 20-500 nm in diameter. Because of their nanometer size dimensions, viruses have been considered as naturally occurring nanoparticles. Virus nanoparticles have been subject to the nanoscience and nanoengineering disciplines. Viruses can be regarded as prefabricated nanoparticles. Many different viruses have been studied for various applications in nanotechnology: for example, mammalian viruses are being developed as vectors for gene delivery, and bacteriophages and plant viruses have been used in drug delivery and imaging applications as well as in vaccines and immunotherapy intervention.

Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential application for effective drug delivery. Nanomaterials exhibit different chemical and physical properties or biological effects compared to larger-scale counterparts that can be beneficial for drug delivery systems. Some important advantages of nanoparticles is their high surface-area-to-volume ratio, chemical and geometric tunability, and their ability to interact with biomolecules to facilitate uptake across the cell membrane. The large surface area also has a large affinity for drugs and small molecules, like ligands or antibodies, for targeting and controlled release purposes. Nanoparticles refer to a large family of materials both organic and inorganic. Each material has uniquely tunable properties and thus can be selectively designed for specific applications. Despite the many advantages of nanoparticles, there are also many challenges, including but not exclusive to: nanotoxicity, biodistribution and accumulation, and the clearance of nanoparticles by human body. The National Institute of Biomedical Imaging and Bioengineering has issued the following prospects for future research in nanoparticle drug delivery systems:

  1. crossing the blood-brain barrier (BBB) in brain diseases and disorders;
  2. enhancing targeted intracellular delivery to ensure the treatments reach the correct structures inside cells;
  3. combining diagnosis and treatment.


  1. Tseng, Ricky J et al. "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles". Nature nanotechnology, Vol:1. Pages 72–77. October, 2006.