Train track (mathematics)

Last updated
A train track on a triple torus. Triple-torus-train-track.svg
A train track on a triple torus.

In the mathematical area of topology, a train track is a family of curves embedded on a surface, meeting the following conditions:

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Topology Branch of mathematics

In mathematics, topology is concerned with the properties of space that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending, but not tearing or gluing.

Surface (topology) two-dimensional manifold, and, as such, may be an "abstract surface" not embedded in any Euclidean space

In topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solids; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

  1. The curves meet at a finite set of vertices called switches.
  2. Away from the switches, the curves are smooth and do not touch each other.
  3. At each switch, three curves meet with the same tangent line, with two curves entering from one direction and one from the other.

The main application of train tracks in mathematics is to study laminations of surfaces, that is, partitions of closed subsets of surfaces into unions of smooth curves. Train tracks have also been used in graph drawing.

Graph drawing visualization of node-link graphs

Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics.

Train tracks and laminations

A switch in a train track, and the corresponding portion of a lamination. Track-lamination.svg
A switch in a train track, and the corresponding portion of a lamination.

A lamination of a surface is a partition of a closed subset of the surface into smooth curves. The study of train tracks was originally motivated by the following observation: If a generic lamination on a surface is looked at from a distance by a myopic person, it will look like a train track.

A switch in a train track models a point where two families of parallel curves in the lamination merge to become a single family, as shown in the illustration. Although the switch consists of three curves ending in and intersecting at a single point, the curves in the lamination do not have endpoints and do not intersect each other.

For this application of train tracks to laminations, it is often important to constrain the shapes that can be formed by connected components of the surface between the curves of the track. For instance, Penner and Harer require that each such component, when glued to a copy of itself along its boundary to form a smooth surface with cusps, have negative cusped Euler characteristic.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

A train track with weights, or weighted train track or measured train track, consists of a train track with a non-negative real number, called a weight, assigned to each branch. The weights can be used to model which of the curves in a parallel family of curves from a lamination are split to which sides of the switch. Weights must satisfy the following switch condition: The weight assigned to the ingoing branch at a switch should equal the sum of the weights assigned to the branches outgoing from that switch. Weights are closely related to the notion of carrying. A train track is said to carry a lamination if there is a train track neighborhood such that every leaf of the lamination is contained in the neighborhood and intersects each vertical fiber transversely. If each vertical fiber has nontrivial intersection with some leaf, then the lamination is fully carried by the train track.

Real number number representing a continuous quantity

In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as 2. Included within the irrationals are the transcendental numbers, such as π (3.14159265...). In addition to measuring distance, real numbers can be used to measure quantities such as time, mass, energy, velocity, and many more.

Related Research Articles

Algebraic curve algebraic variety of dimension one

In mathematics, a plane real algebraic curve is the set of points on the Euclidean plane whose coordinates are zeros of some polynomial in two variables. More generally an algebraic curve is similar but may be embedded in a higher dimensional space or defined over some more general field.

In mathematics, two functions have a contact of order k if, at a point P, they have the same value and k equal derivatives. This is an equivalence relation, whose equivalence classes are generally called jets. The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation.

Low-dimensional topology branch of topology that studies topological spaces of four or fewer dimensions

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. It can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

3-manifold 3-dimensional manifold

In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

Parallel coordinates chart displaying multivariate data with values represented on parallel axes

Parallel coordinates are a common way of visualizing high-dimensional geometry and analyzing multivariate data.

In mathematics, a branched surface is a generalization of both surfaces and train tracks.

In mathematics, a branched manifold is a generalization of a differentiable manifold which may have singularities of very restricted type and admits a well-defined tangent space at each point. A branched n-manifold is covered by n-dimensional "coordinate charts", each of which involves one or several "branches" homeomorphically projecting into the same differentiable n-disk in Rn. Branched manifolds first appeared in the dynamical systems theory, in connection with one-dimensional hyperbolic attractors constructed by Smale and were formalized by R. F. Williams in a series of papers on expanding attractors. Special cases of low dimensions are known as train tracks and branched surfaces and play prominent role in the geometry of three-manifolds after Thurston.

Fibered knot

In knot theory, a branch of mathematics, a knot or link in the 3-dimensional sphere is called fibered or fibred if there is a 1-parameter family of Seifert surfaces for , where the parameter runs through the points of the unit circle , such that if is not equal to then the intersection of and is exactly .

Three-dimensional space geometric three-parameter model of the physical universe

Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the informal meaning of the term dimension.

In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change.

In mathematics, a Zariski geometry consists of an abstract structure introduced by Ehud Hrushovski and Boris Zilber, in order to give a characterisation of the Zariski topology on an algebraic curve, and all its powers. The Zariski topology on a product of algebraic varieties is very rarely the product topology, but richer in closed sets defined by equations that mix two sets of variables. The result described gives that a very definite meaning, applying to projective curves and compact Riemann surfaces in particular.

Tubular neighborhood neighborhood of a submanifold homeomorphic to that submanifold’s normal bundle

In mathematics, a tubular neighborhood of a submanifold of a smooth manifold is an open set around it resembling the normal bundle.

Cusp (singularity) Point on a curve where motion must move backwards

In mathematics a cusp, sometimes called spinode in old texts, is a point on a curve where a moving point on the curve must start to move backward. A typical example is given in the figure. A cusp is thus a type of singular point of a curve.

Vertex (curve) a point of extreme curvature on a curve

In the geometry of planar curves, a vertex is a point of where the first derivative of curvature is zero. This is typically a local maximum or minimum of curvature, and some authors define a vertex to be more specifically a local extreme point of curvature. However, other special cases may occur, for instance when the second derivative is also zero, or when the curvature is constant. For space curves, on the other hand, a vertex is a point where the torsion vanishes.

In mathematical physics, global hyperbolicity is a certain condition on the causal structure of a spacetime manifold. This is relevant to Einstein's theory of general relativity, and potentially to other metric gravitational theories.

In graph theory, a branch of mathematics, a skew-symmetric graph is a directed graph that is isomorphic to its own transpose graph, the graph formed by reversing all of its edges, under an isomorphism that is an involution without any fixed points. Skew-symmetric graphs are identical to the double covering graphs of bidirected graphs.

Lamination (topology)

In topology, a branch of mathematics, a lamination is a :

A railway or railroad is a track where the vehicle travels over two parallel steel bars, called rails. The rails support and guide the wheels of the vehicles, which are traditionally either trains or trams. Modern light rail is a relatively new innovation which combines aspects of those two modes of transport. However fundamental differences in the track and wheel design are important, especially where trams or light railways and trains have to share a section of track, as sometimes happens in congested areas.

Convex curve

In geometry, a convex curve is a simple curve in the Euclidean plane which lies completely on one side of each and every one of its tangent lines.

In astronomy, geography, and related sciences and contexts, a direction or plane passing by a given point is said to be vertical if it contains the local gravity direction at that point. Conversely, a direction or plane is said to be horizontal if it is perpendicular to the vertical direction.

References

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.