Transfer-appropriate processing

Last updated

Transfer-appropriate processing (TAP) is a type of state-dependent memory specifically showing that memory performance is not only determined by the depth of processing (where associating meaning with information strengthens the memory; see levels-of-processing effect), but by the relationship between how information is initially encoded and how it is later retrieved.

Contents

Further explanation

Memory will be best when the processes engaged in during encoding match those engaged in during retrieval. Transfer-appropriate processing (TAP) argues that to have memory successfully recalled there needs to be a successful encoding process. There has been an argument among cognitive psychologists that suggests that the encoding process and retrieval processes are substantially similar. In an experiment that tested TAP researchers found this argument to be true. They found that successful memory retrieval backs up the encoding process, which therefore has a similar effect on both the retrieval and encoding function. This experiment also pointed out that there are certain variables to consider when looking at TAP because they greatly limit the effectiveness of the retrieval and encoding processes. They believed that to change TAP into a broader form, you would have to question whether the two processing forms actually coincide. [1] Also, TAP is an information-processing action that occurs in two stages; the first includes the procedures that should manipulate the information that coincides with the task activity, and the second stage focuses on the experience that the task activity created. Meaning, that we do not process stimuli all at one time, but instead break it down into a series of responses. [2]

History: the beginnings

In 1972, Fergus I. M. Craik and Robert S. Lockhart completed studies that went against the idea of multistore theories and were in favor of levels of processing when it comes to the human memory. Craik and Lockhart's studies were some of the first studies completed dealing with Transfer-Appropriate Processing, which is now popular because of their ideas. Craik and Lockhart explained that the theory of multistore had very little evidence when it came to capacity, coding and retention. Instead, they proposed that memory involves level of processing. They concluded that we are always building from what we already know through our senses, patterns, and stimulus. Craik and Lockhart completed 10 experiments where participants processed different words by answering questions about them. Depending on the word, the response could be shallow or deep. After this section of the experiment was complete, participants were asked to randomly recall words. They were able to conclude that participants remembered positive and deeper responses more easily. [3] Next, Craik continued his work with Endel Tulving in 1975. They tested subjects individually for perception and speed. Participants had a word revealed to them for 200 ms. through a tachistoscope. Before exposure, questions were asked about the word. These questions were meant to create shallow or deep reactions about the words for the participants. After this was complete, the participants were then asked questions about the words. After these random questions, the participants were asked to recall the words. It was assumed that deeper level questions would be recalled more often. Through four separate experiments, Craik and Tulving found this to be true. [4]

Experiments

This phenomenon has been shown by various experiments:

Problems

Although this theory has many experiments backing up its reliability, many researchers are questioning the levels of processing that TAP seems to fall into. The levels of processing have been under speculation for the fact that they seem untestable and unfalsifiable. They argue that these processing effects are "circular" in the sense that deep processing can be considered as just better remembering. They believe that much of the questionability of the processing effects lies between the encoding specificity principle and TAP. The researchers argue that these processing systems function much like Darwin's natural selection theory in that the "fitness" of a species and the "depth of processing" in the levels of processing cannot fully predict the final outcome, meaning the survival and retrievability of the species or the information processed. They have found that TAP is still vulnerable to this same type of circularity because it lacks a precise and definite definition. Basically, TAP can only be identified as happening only AFTER retrieval has occurred. Roediger and Gallo argue that after 30 years of research, they still cannot identify why or how we get the typical levels-of-processing effect. However, they still believe that even with these doubts that memory retrieval can be studied and subjected to experiments with "specified" retrieval conditions. Therefore, the levels-of-processing effect that TAP falls under supports that the "greater survival" of deep processing most likely occurs, which means that if they had any doubts about transfer-appropriate processing, they should consider the fact that retrieval has more of a range than a semantic processing theory would support, and more than likely thrive and survive. [9]

Examples

An example of TAP can be compared to the theory of natural selection presented by Darwin in the section above. This means that if a certain species is "fitter" than the other species, then that fitter species is more likely to continue to adapt to future environmental situations. Lockhart, who refers to this phenomenon, suggests that if a rabbit and a koala were compared that a rabbit would thrive and survive in many environments whereas the koala has worked itself into a "narrow ecological niche". This means the rabbit would excel at surviving because it has a wider range of flexible qualities. Of course it could be argued that there would be certain areas that the koala would thrive in, but they are not as numerous as the survival qualities of the rabbit. [10]

Related Research Articles

Long-term memory (LTM) is the stage of the Atkinson–Shiffrin memory model in which informative knowledge is held indefinitely. It is defined in contrast to short-term and working memory, which persist for only about 18 to 30 seconds. LTM is commonly labelled as "explicit memory" (declarative), as well as "episodic memory," "semantic memory," "autobiographical memory," and "implicit memory".

Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.

<span class="mw-page-title-main">Picture superiority effect</span> Psychological phenomenon

The picture superiority effect refers to the phenomenon in which pictures and images are more likely to be remembered than are words. This effect has been demonstrated in numerous experiments using different methods. It is based on the notion that "human memory is extremely sensitive to the symbolic modality of presentation of event information". Explanations for the picture superiority effect are not concrete and are still being debated.

The spacing effect demonstrates that learning is more effective when study sessions are spaced out. This effect shows that more information is encoded into long-term memory by spaced study sessions, also known as spaced repetition or spaced presentation, than by massed presentation ("cramming").

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word E.g how the word is spelled and how letters look. Phonemic processing includes remembering the word by the way it sounds. E.G the word tall rhymes with fall. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar of has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

Self-referential encoding is a method of organizing information in one's memory in which one interprets incoming information in relation to oneself, using one's self-concept as a background. Examples include being able to attribute personality traits to oneself or to identify recollected episodes as being personal memories of the past. The implications of self-referential processing are evident in many psychological phenomena. For example, the "cocktail party effect" notes that people attend to the sound of their names even during other conversation or more prominent, distracting noise. Also, people tend to evaluate things related to themselves more positively. For example, people tend to prefer their own initials over other letters. The self-reference effect (SRE) has received the most attention through investigations into memory. The concepts of self-referential encoding and the SRE rely on the notion that relating information to the self during the process of encoding it in memory facilitates recall, hence the effect of self-reference on memory. In essence, researchers have investigated the potential mnemonic properties of self-reference.

Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. Working memory stores information for immediate use or manipulation, which is aided through hooking onto previously archived items already present in the long-term memory of an individual.

The generation effect is a phenomenon where information is better remembered if it is generated from one's own mind rather than simply read. Researchers have struggled to account for why the generated information is better recalled than read information, but no single explanation has been sufficient.

Fergus Ian Muirden Craik FRS is a cognitive psychologist known for his research on levels of processing in memory. This work was done in collaboration with Robert Lockhart at the University of Toronto in 1972 and continued with another collaborative effort with Endel Tulving in 1975. Craik has received numerous awards and is considered a leader in the area of memory, attention and cognitive aging. Moreover, his work over the years can be seen in developmental psychology, aging and memory, and the neuropsychology of memory.

Henry L. "Roddy" Roediger III is an American psychology researcher in the area of human learning and memory. He rose to prominence for his work on the psychological aspects of false memories.

Retrospective memory is the memory of people, words, and events encountered or experienced in the past. It includes all other types of memory including episodic, semantic and procedural. It can be either implicit or explicit. In contrast, prospective memory involves remembering something or remembering to do something after a delay, such as buying groceries on the way home from work. However, it is very closely linked to retrospective memory, since certain aspects of retrospective memory are required for prospective memory.

In psychology, context-dependent memory is the improved recall of specific episodes or information when the context present at encoding and retrieval are the same. In a simpler manner, "when events are represented in memory, contextual information is stored along with memory targets; the context can therefore cue memories containing that contextual information". One particularly common example of context-dependence at work occurs when an individual has lost an item in an unknown location. Typically, people try to systematically "retrace their steps" to determine all of the possible places where the item might be located. Based on the role that context plays in determining recall, it is not at all surprising that individuals often quite easily discover the lost item upon returning to the correct context. This concept is heavily related to the encoding specificity principle.

The recognition failure of recallable words is an experimental phenomenon in cognitive psychology originally discovered by the memory researcher Endel Tulving and colleagues. Although recognition of previously-studied words through a recognition memory test, in which the words are re-presented for a memory judgment, generally yields a greater response probability than the recall of previously studied words through a recall test, in which the words must be mentally retrieved from memory, Tulving found that this typical result could be reversed by manipulating the retrieval cues provided at test.

In cognitive psychology, a recall test is a test of memory of mind in which participants are presented with stimuli and then, after a delay, are asked to remember as many of the stimuli as possible. Memory performance can be indicated by measuring the percentage of stimuli the participant was able to recall. An example of this would be studying a list of 10 words and later recalling 5 of them. This is a 50 percent recall. Participants' responses also may be analyzed to determine if there is a pattern in the way items are being recalled from memory. For example, if participants are given a list consisting of types of vegetables and types of fruit, their recall can be assessed to determine whether they grouped vegetables together and fruits together. Recall is also involved when a person is asked to recollect life events, such as graduating high school, or to recall facts they have learned, such as the capital of Florida.

Memory gaps and errors refer to the incorrect recall, or complete loss, of information in the memory system for a specific detail and/or event. Memory errors may include remembering events that never occurred, or remembering them differently from the way they actually happened. These errors or gaps can occur due to a number of different reasons, including the emotional involvement in the situation, expectations and environmental changes. As the retention interval between encoding and retrieval of the memory lengthens, there is an increase in both the amount that is forgotten, and the likelihood of a memory error occurring.

The encoding specificity principle is the general principle that matching the encoding contexts of information at recall assists in the retrieval of episodic memories. It provides a framework for understanding how the conditions present while encoding information relate to memory and recall of that information.

Retrieval-induced forgetting (RIF) is a memory phenomenon where remembering causes forgetting of other information in memory. The phenomenon was first demonstrated in 1994, although the concept of RIF has been previously discussed in the context of retrieval inhibition.

<span class="mw-page-title-main">Reconstructive memory</span> A theory of memory recall

Reconstructive memory is a theory of memory recall, in which the act of remembering is influenced by various other cognitive processes including perception, imagination, motivation, semantic memory and beliefs, amongst others. People view their memories as being a coherent and truthful account of episodic memory and believe that their perspective is free from an error during recall. However, the reconstructive process of memory recall is subject to distortion by other intervening cognitive functions such as individual perceptions, social influences, and world knowledge, all of which can lead to errors during reconstruction.

Elaborative encoding is a mnemonic system which uses some form of elaboration, such as an emotional cue, to assist in the retention of memories and knowledge. In this system one attaches an additional piece of information to a memory task which makes it easier to recall. For instance, one may recognize a face easier if character traits are also imparted about the person at the same time.

<span class="mw-page-title-main">Forward testing effect</span>

The forward testing effect, also known as test potentiated new learning, is a psychological learning theory which suggests that testing old information can improve learning of new information. Unlike traditional learning theories in educational psychology which have established the positive effect testing has when later attempting to retrieve the same information, the forward testing effect instead suggests that the testing experience itself possesses unique benefits which enhance the learning of new information. This memory effect is also distinct from the 'practice effect' which typically refers to an observed improvement which results from repetition and restudy, as the testing itself is considered as the catalyst for improved recall. Instead, this theory suggests that testing serves not only as a tool for assessment but as a learning tool which can aid in memory recall. The forward testing effect indicates that educators should encourage students to study using testing techniques rather than restudying information repeatedly.

References

  1. Neil W. Mulligan & Jeffrey P. Lozito (January 2007). "An asymmetry between memory encoding and retrieval. Revelation, Generation, and Transfer-Appropriate Processing". Psychological Science. 17 (1): 7–11. doi:10.1111/j.1467-9280.2005.01657.x. PMID   16371137. S2CID   25543019.
  2. Chris Janiszewski & Elise Chandon (May 2007). "Transfer-Appropriate Processing, Response Fluency, and the Mere Measurement Effect" (PDF). Journal of Marketing Research. 44 (2): 309–323. doi:10.1509/jmkr.44.2.309. S2CID   34685575 . Retrieved October 3, 2012.
  3. Fergus I.M. Craik & Robert S. Lockhart (December 1972). "Levels of processing: A framework for memory research". Journal of Verbal Learning and Verbal Behavior. 11 (6): 671–684. doi:10.1016/S0022-5371(72)80001-X. S2CID   14153362.
  4. Craik, Fergus I. M.; Tulving, Endel (September 1975). "Depth of processing and the retention of words in episodic memory" (PDF). Journal of Experimental Psychology: General. 104 (3): 268–294. doi:10.1037/0096-3445.104.3.268. S2CID   7896617. Archived from the original (PDF) on 2013-10-19. Retrieved 11 October 2012.
  5. Haline E. Schendan & Marta Kutas (2007). "Neurophysiological evidence for transfer appropriate processing of memory: Processing versus feature similarity" (PDF). Psychonomic Bulletin & Review. 14 (4): 612–619. doi: 10.3758/bf03196810 . PMID   17972722. S2CID   1957592 . Retrieved 7 October 2012.
  6. Patricia A. deWinstanley & Elizabeth Ligon Bjork (May 1997). "Processing Instructions and the Generation Effect: A Test of the Multifactor Transfer-appropriate Processing Theory". Memory. 5 (3): 401–422. doi:10.1080/741941392. PMID   9231150.
  7. Stiso, Michael E. "The Role of Transfer-Appropriate Processing in the Effectiveness of Decision-Support Graphics" (PDF). Dissertation. Retrieved 8 October 2012.
  8. Jeffery J. Franks; Carol W. Bilbrey; Khoo Guatlien & Timothy P. McNamara (2000). "Transfer-appropriate processing and repetition priming". Memory & Cognition. 28: 1140–1151. doi: 10.3758/BF03211815 . PMID   11126937.
  9. Lockhart, Robert S. (2002). "Levels of processing, transfer-appropriate processing, and the concept of robust encoding". Memory. 10 (5–6): 397–403. doi:10.1080/09658210244000225. PMID   12396652. S2CID   8984266.
  10. Lockhart, Robert S. (2002). "Levels of processing, transfer-appropriate processing, and the concept of robust encoding". Memory. 10 (5–6): 397–403. doi:10.1080/09658210244000225. PMID   12396652. S2CID   8984266.