Transmethylation

Last updated
The recovery of methionine from homocysteine by transmethylation is depicted in reaction 4. The transmethylation cycle is depicted in reactions 1-4. Met pathway.svg
The recovery of methionine from homocysteine by transmethylation is depicted in reaction 4. The transmethylation cycle is depicted in reactions 1–4.

Transmethylation is a biologically important organic chemical reaction in which a methyl group is transferred from one compound to another.

An example of transmethylation is the recovery of methionine from homocysteine. In order to sustain sufficient reaction rates during metabolic stress, this reaction requires adequate levels of vitamin B12 and folate. Methyl tetrahydrofolate delivers methyl groups to form the active methyl form of vitamin B12 that is required for methylation of homocysteine. Deficiencies of vitamin B12 or folate cause increased levels of circulating homocysteine. Elevated homocysteine is a risk factor for cardiovascular disease and is linked to the metabolic syndrome (insulin insensitivity). [1]

Transmethylation is decreased sometimes in parents of children with autism. [2]

See also

Related Research Articles

Folate Vitamin B9; nutrient essential for DNA synthesis

Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and storage. Folate is required for the body to make DNA and RNA and metabolise amino acids necessary for cell division. As humans cannot make folate, it is required in the diet, making it an essential nutrient. It occurs naturally in many foods. The recommended adult daily intake of folate in the U.S. is 400 micrograms from foods or dietary supplements.

Methionine Group of stereoisomers

Methionine is an essential amino acid in humans. As the substrate for other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical role in the metabolism and health of many species, including humans. It is encoded by the codon AUG.

Homocysteine

Homocysteine is a non-proteinogenic α-amino acid. It is a homologue of the amino acid cysteine, differing by an additional methylene bridge (-CH2-). It is biosynthesized from methionine by the removal of its terminal Cε methyl group. In the body, homocysteine can be recycled into methionine or converted into cysteine with the aid of certain B-vitamins.

Homocystinuria

Homocystinuria or HCU is an inherited disorder of the metabolism of the amino acid methionine due to a deficiency of cystathionine beta synthase or methionine synthase. It is an inherited autosomal recessive trait, which means a child needs to inherit a copy of the defective gene from both parents to be affected. Symptoms of homocystinuria can also be caused by a deficiency of vitamins B6, B12, or folate.

Methylenetetrahydrofolate reductase

Methylene tetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the MTHFR gene. Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine. Natural variation in this gene is common in otherwise healthy people. Although some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer's disease and other forms of dementia, colon cancer, and acute leukemia, findings from small early studies have not been reproduced. Some mutations in this gene are associated with methylenetetrahydrofolate reductase deficiency. Complex I deficiency with recessive spastic paraparesis has also been linked to MTHFR variants. In addition, the aberrant promoter hypermethylation of this gene is associated with male infertility and recurrent spontaneous abortion.

Trimethylglycine

Trimethylglycine (TMG) is an amino acid derivative that occurs in plants. Trimethylglycine was the first betaine discovered; originally it was simply called betaine because, in the 19th century, it was discovered in sugar beets. Since then, many other betaines have been discovered, and the more specific name glycine betaine distinguishes this one.

Methionine synthase

Methionine synthase also known as MS, MeSe, MetH is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene. Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle. In animals this enzyme requires Vitamin B12 (cobalamin) as a cofactor, whereas the form found in plants is cobalamin-independent. Microorganisms express both cobalamin-dependent and cobalamin-independent forms.

Asymmetric dimethylarginine

Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide (NO), a key chemical involved in normal endothelial function and, by extension, cardiovascular health.

Methyltransferase Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltrasferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the nucleophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

Hyperhomocysteinemia

Hyperhomocysteinemia is a medical condition characterized by an abnormally high level of homocysteine in the blood, conventionally described as above 15 µmol/L.

Folate deficiency Abnormally low level of folate (vitamin B9) in the body

Folate deficiency, also known as vitamin B9 deficiency, is a low level of folate and derivatives in the body. Signs of folate deficiency are often subtle. A low number of red blood cells (anemia) is a late finding in folate deficiency and folate deficiency anemia is the term given for this medical condition. It is characterized by the appearance of large-sized, abnormal red blood cells (megaloblasts), which form when there are inadequate stores of folic acid within the body.

Hydroxocobalamin

Hydroxocobalamin, also known as vitamin B12a and hydroxycobalamin, is a vitamin found in food and used as a dietary supplement. As a supplement it is used to treat vitamin B12 deficiency including pernicious anemia. Other uses include treatment for cyanide poisoning, Leber's optic atrophy, and toxic amblyopia. It is given by injection into a muscle or vein.

Vitamin B<sub>12</sub> deficiency Disorder resulting from low blood levels of vitamin B12

Vitamin B12 deficiency, also known as cobalamin deficiency, is the medical condition of low blood and tissue levels of vitamin B12. In mild deficiency, a person may feel tired and have a reduced number of red blood cells (anemia). In moderate deficiency, soreness of the tongue, apthous ulcers, breathlessness, jaundice, hair fall and severe joint pain (arthralgia) may occur, and the beginning of neurological symptoms, including abnormal sensations such as pins and needles, numbness and tinnitus. Severe deficiency may include symptoms of reduced heart function as well as more severe neurological symptoms, including changes in reflexes, poor muscle function, memory problems, irritability, ataxia, decreased taste, decrease level of consciousness, depression, anxiety, guilt and psychosis. Infertility may occur. In young children, symptoms include poor growth, poor development, and difficulties with movement. Without early treatment, some of the changes may be permanent.

Vitamin B<sub><small>12</small></sub>

Vitamin B12, also known as cobalamin, is a water-soluble vitamin involved in the metabolism of every cell of the human body. It is one of eight B vitamins. It is a cofactor in DNA synthesis, and in both fatty acid and amino acid metabolism. It is particularly important in the normal functioning of the nervous system via its role in the synthesis of myelin, and in the maturation of developing red blood cells in the bone marrow.

MTRR (gene)

Methionine synthase reductase also known as MSR is an enzyme that in humans is encoded by the MTRR gene.

GNMT

Glycine N-methyltransferase is an enzyme that in humans is encoded by the GNMT gene.

Cobalamin biosynthesis

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

Relatively speaking, the brain consumes an immense amount of energy in comparison to the rest of the body. The mechanisms involved in the transfer of energy from foods to neurons are likely to be fundamental to the control of brain function. Human bodily processes, including the brain, all require both macronutrients, as well as micronutrients.

Sandra Jill James is an American biochemist and autism researcher who studies metabolic autism biomarkers. She works at Arkansas Children's Hospital Research Institute, where she is the director of the Metabolic Genomics Laboratory, as well as the University of Arkansas for Medical Sciences's department of pediatrics, where she has worked since 2002. She is also a member of the Autism Speaks Treatment Advisory Board, and is also a scientific advisor to the autism foundation N of One. Her current research focuses on the role of epigenetics in causing autism, as well as the effectiveness of supplements as a treatment for autism and the potential existence of abnormal metabolism in autistic children. This research is funded by a 5-year grant from the National Institutes of Health entitled "Metabolic biomarkers of autism: predictive potential and genetic susceptibility," as well as by a grant from Autism Speaks.

Cerebral folate deficiency

Cerebral folate deficiency is a condition in which concentrations of 5-methyltetrahydrofolate are low in the brain as measured in the cerebral spinal fluid despite being normal in the blood. Symptoms typically appear at about 5 to 24 months of age. Without treatment there may be poor muscle tone, trouble with coordination, trouble talking, and seizures.

References

  1. Carmel R, Green R, Rosenblatt DS, Watkins D (2003). "Update on cobalamin, folate, and homocysteine" (PDF). Hematology Am Soc Hematol Educ Program. 2003: 62–81. doi:10.1182/asheducation-2003.1.62. PMID   14633777.
  2. James SJ, Melnyk S, Jernigan S, Hubanks A, Rose S, Gaylor DW (November 2008). "Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism". J Autism Dev Disord. 38 (10): 1966–75. doi:10.1007/s10803-008-0591-5. PMC   2584168 . PMID   18512136.