This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)

In geometry and topology, trivial cylinders are certain pseudoholomorphic curves appearing in certain cylindrical manifolds.
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer.
In mathematics, topology is concerned with the properties of space that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending, but not tearing or gluing.
In mathematics, specifically in topology and geometry, a pseudoholomorphic curve is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory.
In Floer homology and its variants, chain complexes or differential graded algebras are generated by certain combinations of closed orbits of vector fields. In symplectic Floer homology, one considers the Hamiltonian vector field of a Hamiltonian function on a symplectic manifold; in symplectic field theory, contact homology, and their variants, one considers the Reeb vector field associated to a contact form, or more generally a stable Hamiltonian structure.
In mathematics, Floer homology is a tool for studying symplectic geometry and lowdimensional topology. Floer homology is a novel invariant that arises as an infinitedimensional analog of finitedimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Hamiltonian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed threedimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three and fourdimensional manifolds.
In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field, defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.
In mathematics, a symplectic manifold is a smooth manifold, M, equipped with a closed nondegenerate differential 2form, ω, called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.
The differentials all count some flavor of pseudoholomorphic curves in a manifold with a cylindrical almostcomplex structure whose ends at negative infinity are the given collection of closed orbits. For instance, in symplectic Floer homology, one considers the product of the mapping torus of a symplectomorphism with the real numbers; in symplectic field theory, one considers the symplectization of a contact manifold.
The product of a given embedded closed orbit with R is always a pseudoholomorphic curve, and such a curve is called a trivial cylinder. Trivial cylinders do not generally contribute to the aforementioned differentials, but they may appear as components of more complicated curves which do.
Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the threedimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.
In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volumepreserving and preserves the symplectic structure of phase space, and is called a canonical transformation.
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete nonintegrability'. Equivalently, such a distribution may be given as the kernel of a differential oneform, and the nonintegrability condition translates into a maximal nondegeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.
In physics and mathematics, a symplectic vector field is one whose flow preserves a symplectic form. That is, if is a symplectic manifold with smooth manifold and symplectic form , then a vector field in the Lie algebra is symplectic if its flow preserves the symplectic structure. In other words, the Lie derivative of the vector field must vanish:
In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.
In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten.
In mathematics, specifically in the field of differential topology, Morse homology is a homology theory defined for any smooth manifold. It is constructed using the smooth structure and an auxiliary metric on the manifold, but turns out to be topologically invariant, and is in fact isomorphic to singular homology. Morse homology also serves as a model for the various infinitedimensional generalizations known as Floer homology theories.
In mathematics, the Gromov invariant of Clifford Taubes counts embedded pseudoholomorphic curves in a symplectic 4manifold, where the curves are holomorphic with respect to an auxiliary compatible almost complex structure.
In differential topology, given a family of MorseSmale functions on a smooth manifold X parameterized by a closed interval I, one can construct a MorseSmale vector field on X × I whose critical points occur only on the boundary. The Morse differential defines a chain map from the Morse complexes at the boundaries of the family, the continuation map. This can be shown to descend to an isomorphism on Morse homology, proving its invariance of Morse homology of a smooth manifold.
In mathematics, in the area of symplectic topology, relative contact homology is an invariant of spaces together with a chosen subspace. Namely, it is associated to a contact manifold and one of its Legendrian submanifolds. It is a part of a more general invariant known as symplectic field theory, and is defined using pseudoholomorphic curves.
In mathematics, the Weinstein conjecture refers to a general existence problem for periodic orbits of Hamiltonian or Reeb vector flows. More specifically, the conjecture claims that on a compact contact manifold, its Reeb vector field should carry at least one periodic orbit.
In the mathematical field of symplectic topology, Gromov's compactness theorem states that a sequence of pseudoholomorphic curves in an almost complex manifold with a uniform energy bound must have a subsequence which limits to a pseudoholomorphic curve which may have nodes or "bubbles". A bubble is a holomorphic sphere which has a transverse intersection with the rest of the curve. This theorem, and its generalizations to punctured pseudoholomorphic curves, underlies the compactness results for flow lines in Floer homology and symplectic field theory.
In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti.
Clifford Henry Taubes is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and lowdimensional topology. His brother, Gary Taubes, is a science writer.
In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring significantly affects its structure, as well.
In symplectic geometry, the spectral invariants are invariants defined for the group of Hamiltonian diffeomorphisms of a symplectic manifold, which is closed related to Floer theory and Hofer geometry.