Two-photon circular dichroism

Last updated
Figure 1. Comparative schematic between one-photon absorption (OPA) and TPA processes as well as ECD and degenerate TPCD. Comparative Schematic between One and Two Photon Processes.png
Figure 1. Comparative schematic between one-photon absorption (OPA) and TPA processes as well as ECD and degenerate TPCD.

Two-photon circular dichroism (TPCD), the nonlinear counterpart of electronic circular dichroism (ECD), is defined as the differences between the two-photon absorption (TPA) cross-sections obtained using left circular polarized light and right circular polarized light (see Figure 1). [1]

Contents

Background

Typically, two-photon absorption (TPA) takes place at twice the wavelength as one-photon absorption (OPA). This feature allows for the TPCD based study of chiral systems in the far to near ultraviolet (UV) region. ECD cannot be employed in this region due to interferences from strong linear absorption of typical buffers and solvents and also because of the scattering exhibited by inhomogeneous samples in this region. Several other advantages are associated with the use of non-linear absorption, i.e. high spatial resolution, enhanced penetration depth, improved background discrimination and reduced photodamage to living specimens. [2] In addition, the fact that TPA transitions obey different selection rules than OPA (even-parity vs. odd-parity) leads to think that in chiral molecules ECD and TPCD should present different spectral features, thus making the two methods complementary. TPCD is very sensitive to small structural and conformational distortions of chiral molecules, and therefore, is potentially useful for the fundamental study of optically active molecules. Finally, TPCD has the potential to penetrate into the far-UV region, where important structural/conformational information is typically obscure to ECD. This would enable the discovery of new information about molecular systems of interest such as, peptides, biological macromolecules (allowing for a deeper understanding of diseases like Alzheimer's and Parkinson's) and potential candidates for negative refractive index (for the developing of cloaking devices).

TPCD has been applied in experiments using pump-probe, [3] intensity dependent multiphoton optical rotation, [4] resonance-enhanced multiphoton ionization, [5] [6] and polarization modulation single beam Z-scan. [7] The first experimental measurement of TPCD was performed in 1995 using a fluorescence based technique (FD-TPCD), [8] but it was not until the introduction of the double L-scan technique in 2008 by Hernández and co-workers, [9] that a more reliable and versatile technique to perform TPCD measurements became available. Since the introduction of the double L-scan several theoretical-experimental studies based on TPCD have been published, i.e. TPCD of asymmetric catalysts, [10] [11] [12] effect of the curvature of the π-electron delocalization on the TPCD signal, [13] fragmentation-recombination approach (FRA) for the study of TPCD of large molecules [14] [15] and the development of an FD-TPCD based microscopy technique. [16] Additionally, Rizzo and co-workers have reported purely theoretical works on TPCD. [17] [18] [19] [20] [21] [22] [23]

Theory

TPCD was theoretically predicted by Tinoco [24] and Power [25] in 1975, and computationally implemented three decades later by Rizzo and co-workers, [26] using DALTON [27] and later [28] at the CC2 level in the TURBOMOLE package. The expression for TPCD, defined as, , was obtained by Tinoco in his 1975 paper as a semiclassical extension of the TPA formulae. [24] Quantum electrodynamical equivalent expressions were obtained by Power, [25] by Andrews [29] and, in a series of papers, by Meath and Power [30] [31] [32] [33] who were able to generalize the approach to the case of n photons, [32] and considered also the modifications occurring in the formulae when elliptical polarization is assumed. [33]

TPCD can be obtained theoretically using Tinoco’s equation [24]

where is the circular frequency of the incident radiation, is the circular frequency for a given 0→f transition, is the TPCD rotatory strength, is a normalized lineshape, is the electric constant and is the speed of light in vacuum.

, is obtained from

where the terms refer to the experimental relative orientation of the two incident photons. For the typical double-L scan setup, , and , which corresponds to two left or right circularly polarized photons propagating parallel to each other and in the same direction. The molecular parameters are obtained from the following equations,

where the molecular parameters are defined in function of the two-photon generalized tensors, (involving magnetic transition dipole matrix elements), (involving electric transition dipole matrix elements in the form of the velocity operator) and (including electric quadrupole transition matrix elements, in the velocity formulation).

Experiments

Double L-scan

The double L-scan is an experimental method that allows obtaining simultaneously polarization dependent TPA effects in chiral molecules. Performing measurements on equal “twin” pulses allows compensating for energy and mode fluctuations in the sample that can mask the small TPCD signal. [9]

To briefly describe the setup, short pulses coming from the excitation source (typically an OPG or an OPA) are split into “twin” pulses (at BS2), then the polarization of the pulses is controlled individually using quarter-waveplates (WP2 and WP3), allowing to perform simultaneous polarization dependent measurements. The sample is held in a 1 mm quartz cuvette and the incident angle of the light coming from both arms (M2 and M3) is 45°. The two incident beams have a separation on the vertical axis of about 1 cm, to avoid interference effects. Unlike Z-scan, in the double L-scan the sample is at fixed position and two identical focusing lenses (L2 and L3) move along the propagation axis (z axis). Calibration is required to ensure that z1= z2 during the entire scan.

Double L-Scan Geometry. Mirrors (M1, M2, M3); wave plates (WP1, WP2, WP3); Glan polarizer (P); beam splitters (BS1, BS2); convergent lenses (L1, L2, L3, L4, L5); silicon detectors (D1, D2, D3); neutral density filters (DF1, DF2, DF3); translation stages (TS1, TS2); step-motors (SM1, SM2); synchronization box (SB); sample (S), and control box (CB). Double L-Scan.tif
Double L-Scan Geometry. Mirrors (M1, M2, M3); wave plates (WP1, WP2, WP3); Glan polarizer (P); beam splitters (BS1, BS2); convergent lenses (L1, L2, L3, L4, L5); silicon detectors (D1, D2, D3); neutral density filters (DF1, DF2, DF3); translation stages (TS1, TS2); step-motors (SM1, SM2); synchronization box (SB); sample (S), and control box (CB).

See also

Related Research Articles

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

Circular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century. Circular dichroism and circular birefringence are manifestations of optical activity. It is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. Most notably, UV CD is used to investigate the secondary structure of proteins. UV/Vis CD is used to investigate charge-transfer transitions. Near-infrared CD is used to investigate geometric and electronic structure by probing metal d→d transitions. Vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA.

<span class="mw-page-title-main">Magnetic circular dichroism</span>

Magnetic circular dichroism (MCD) is the differential absorption of left and right circularly polarized light, induced in a sample by a strong magnetic field oriented parallel to the direction of light propagation. MCD measurements can detect transitions which are too weak to be seen in conventional optical absorption spectra, and it can be used to distinguish between overlapping transitions. Paramagnetic systems are common analytes, as their near-degenerate magnetic sublevels provide strong MCD intensity that varies with both field strength and sample temperature. The MCD signal also provides insight into the symmetry of the electronic levels of the studied systems, such as metal ion sites.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

<span class="mw-page-title-main">Capillary wave</span> Wave on the surface of a fluid, dominated by surface tension

A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.

<span class="mw-page-title-main">Polarization density</span> Vector field describing the density of electric dipole moments in a dielectric material

In classical electromagnetism, polarization density is the vector field that expresses the volumetric density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

<span class="mw-page-title-main">Fermi's interaction</span> Mechanism of beta decay proposed in 1933

In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.

Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.

<span class="mw-page-title-main">Einstein coefficients</span> Quantities describing probability of absorption or emission of light

Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.

In the mathematical description of general relativity, the Boyer–Lindquist coordinates are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole.

<span class="mw-page-title-main">Two-photon absorption</span> Simultaneous absorption of two photons by a molecule

In atomic physics, two-photon absorption, also called two-photon excitation or non-linear absorption, is the simultaneous absorption of two photons of identical or different frequencies in order to excite a molecule from one state to a higher energy, most commonly an excited electronic state. Absorption of two photons with different frequencies is called non-degenerate two-photon absorption. Since TPA depends on the simultaneous absorption of two photons, the probability of TPA is proportional to the square of the light intensity; thus it is a nonlinear optical process. The energy difference between the involved lower and upper states of the molecule is equal or smaller than the sum of the photon energies of the two photons absorbed. Two-photon absorption is a third-order process, with absorption cross section typically several orders of magnitude smaller than one-photon absorption cross section.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

The McCumber relation is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers. It is named after Dean McCumber, who proposed the relationship in 1964.

<span class="mw-page-title-main">Jaynes–Cummings–Hubbard model</span> Model in quantum optics

The Jaynes–Cummings–Hubbard (JCH) model is a many-body quantum system modeling the quantum phase transition of light. As the name suggests, the Jaynes–Cummings–Hubbard model is a variant on the Jaynes–Cummings model; a one-dimensional JCH model consists of a chain of N coupled single-mode cavities, each with a two-level atom. Unlike in the competing Bose–Hubbard model, Jaynes–Cummings–Hubbard dynamics depend on photonic and atomic degrees of freedom and hence require strong-coupling theory for treatment. One method for realizing an experimental model of the system uses circularly-linked superconducting qubits.

In quantum chromodynamics (QCD), Brown–Rho (BR) scaling is an approximate scaling law for hadrons in an ultra-hot, ultra-dense medium, such as hadrons in the quark epoch during the first microsecond of the Big Bang or within neutron stars.

<span class="mw-page-title-main">Hyper–Rayleigh scattering</span> Optical phenomenon

Hyper–Rayleigh scattering optical activity, a form of chiroptical harmonic scattering, is a nonlinear optical physical effect whereby chiral scatterers convert light to higher frequencies via harmonic generation processes, in a way that the intensity of generated light depends on the chirality of the scatterers. "Hyper–Rayleigh scattering" is a nonlinear optical counterpart to Rayleigh scattering. "Optical activity" refers to any changes in light properties that are due to chirality.

References

  1. 1 2 Hernández, F.E.; Rizzo, A. (2011). "Two-Photon Polarization Dependent Spectroscopy in Chirality: A Novel Experimental-Theoretical Approach to Study Optically Active Systems". Molecules. 16 (4): 3315–3337. doi: 10.3390/molecules16043315 . PMC   6260626 . PMID   21512440.
  2. Denk, W.; Strickler, J.; Webb, W. (1990). "Two-Photon Laser Scanning Fluorescence Microscopy". Science. 248 (4951): 73–76. Bibcode:1990Sci...248...73D. doi:10.1126/science.2321027. PMID   2321027.
  3. Mesnil, H.; Hache, F. (2000). "Experimental evidence of third-order nonlinear dichroism in a liquid of chiral molecules". Phys. Rev. Lett. 85 (20): 4257–4260. Bibcode:2000PhRvL..85.4257M. doi:10.1103/PhysRevLett.85.4257. PMID   11060612.
  4. Cameron, R.; Tabisz, G.C. (2007). "Characterization of intensity-dependent optical rotation phenomena in chiral molecules in solution". J. Chem. Phys. 126 (22): 224507. Bibcode:2007JChPh.126v4507C. doi:10.1063/1.2743959. PMID   17581063.
  5. Li, R.; Sullivan, R.; Al-Basheer, W.; Pagni, R.M. (2006). "Compton, R. N., Linear and nonlinear circular dichroism of R-(+)-3-methylcyclopentanone". J. Chem. Phys. 125 (14): 144304. Bibcode:2006JChPh.125n4304L. doi: 10.1063/1.2338519 . PMID   17042587.
  6. Bornschlegl, A.; Logé, C.; Boesl, U. (2007). "Investigation of CD effects in the multi photon ionisation of R-(+)-3-methylcyclopentanone". Chem. Phys. Lett. 447 (4–6): 187–191. Bibcode:2007CPL...447..187B. doi:10.1016/j.cplett.2007.09.012.
  7. Markowicz, P.P.; Samoc, M.; Cerne, J.; Prasad, P. N.; Pucci, A.; Ruggeri, G. (2004). "Modified Z-scan Techniques for Investigations of Nonlinear Chiroptical Effects". Opt. Express. 12 (21): 5209–5214. Bibcode:2004OExpr..12.5209M. doi:10.1364/OPEX.12.005209. hdl: 10440/398 . PMID   19484078.
  8. Gunde, K.E.; Richardson, F.S. (1995). "Fluorescence-Detected Two-Photon Circular Dichroism of Gd3+ in Trigonal Na3[Gd(C4H4O5)3] • 2NaClO4 • 6H2O". Chem. Phys. 194 (1): 195–206. Bibcode:1995CP....194..195G. doi:10.1016/0301-0104(95)00025-J.
  9. 1 2 3 DeBoni, L; Toro, C.; Hernández, F.E. (2008). "Synchronized Double L-Scan Technique for the Simultaneous Measurement of Polarization-Dependent Two-Photon Absorption in Chiral Molecules". Opt. Lett. 33 (24): 2958–2960. Bibcode:2008OptL...33.2958D. doi:10.1364/OL.33.002958. PMID   19079505.
  10. Toro, C.; De Boni, L.; Lin, N.; Santoro, F.; Rizzo, A.; Hernandez, F. E. (2010). "Two-Photon Absorption Circular Dichroism: A New Twist in Nonlinear Spectroscopy". Chem. Eur. J. 16 (11): 3504–3509. doi:10.1002/chem.200902286. PMID   20162644.
  11. Díaz, C.; Echevarria, L.; Rizzo, A.; Hernández, F. E. (2014). "Two-Photon Circular Dichroism of an Axially Dissymmetric Diphosphine Ligand with Strong Intramolecular Charge Transfer". J. Phys. Chem. 118 (5): 940–946. Bibcode:2014JPCA..118..940D. doi:10.1021/jp4119265. PMID   24446721.
  12. Lin, N.; Santoro, F.; Zhao, X.; Toro, C.; De Boni, L.; Hernández, F. E.; Rizzo, A. (2011). "Computational Challenges in Simulating and Analyzing Experimental Linear and Nonlinear Circular Dichroism Spectra. R-(+)-1,1'-bis(2-naphthol) as a Prototype Case". J. Phys. Chem. B. 115 (5): 811–824. doi:10.1021/jp108669f. PMID   21208000.
  13. Díaz, C.; Lin, N.; Toro, C.; Passier, R.; Rizzo, A.; Hernández, F. E. (2012). "The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality". J. Phys. Chem. Lett. 3 (13): 1808–1813. doi:10.1021/jz300577e. PMID   26291864.
  14. Díaz, C.; Echevarria, L.; Hernández, F. E. (2013). "Overcoming the Existent Computational Challenges in the Ab Initio Calculations of the Two-Photon Circular Dichroism Spectra of Large Molecules using a Fragment-Recombination Approach". Chem. Phys. Lett. 568–569: 176–183. Bibcode:2013CPL...568..176D. doi:10.1016/j.cplett.2013.03.019.
  15. Díaz, C.; Echevarria, L.; Hernández, F. E. (2013). "Conformational Study of an Axially Chiral Salen Ligand in Solution using Two-Photon Circular Dichroism and the Fragment-Recombination Approach". J. Phys. Chem. 117 (35): 8416–8426. Bibcode:2013JPCA..117.8416D. doi:10.1021/jp4065714. PMID   23937607.
  16. Savoini, M.; Wu, X.; Celebrano, M.; Ziegler, J.; Biagioni, P.; Meskers, S. C. J.; Duò, L.; Hecht, B.; et al. (2012). "Circular Dichroism Probed by Two-Photon Fluorescence Microscopy in Enantiopure Chiral Polyfluorene Thin Films". J. Am. Chem. Soc. 134 (13): 5832–5835. doi:10.1021/ja209916y. PMID   22413739.
  17. Rizzo, A.; Jansík, B.; Pedersen, T. B.; Agren, H. (2006). "Origin Invariant Approaches to the Calculation of Two-Photon Circular Dichroism". J. Chem. Phys. 125 (6): 64113. Bibcode:2006JChPh.125f4113R. doi:10.1063/1.2244562. PMID   16942279.
  18. Jansík, B.; Rizzo, A.; Agren, H. (2007). "b Initio Study of the Two-Photon Circular Dichroism in Chiral Natural Amino Acids". J. Phys. Chem. B. 111 (2): 446–460. doi:10.1021/jp0653555. PMID   17214497.
  19. Jansík, B.; Rizzo, A.; Agren, H.; Champagne, B. (2008). "Strong Two-Photon Circular Dichroism in Helicenes: A Theoretical Investigation". J. Chem. Theory Comput. 4 (3): 457–467. doi:10.1021/ct700329a. PMID   26620786.
  20. Lin, N.; Santoro, F.; Zhao, X.; Rizzo, A.; Barone, V. (2008). "Vibronically Resolved Electronic Circular Dichroism Spectra of (R)-(+)-3-Methylcyclopentanone: A Theoretical Study". J. Phys. Chem. A. 112 (48): 12401–12411. Bibcode:2008JPCA..11212401L. doi:10.1021/jp8064695. PMID   18998661.
  21. Rizzo, A.; Lin, N.; Ruud, K. (2008). "Ab Initio Study of the One- and Two-Photon Circular Dichroism of R-(+)-3-Methyl-Cyclopentanone". J. Chem. Phys. 128 (16): 164312. Bibcode:2008JChPh.128p4312R. doi:10.1063/1.2907727. PMID   18447444.
  22. Lin, N.; Santoro, F.; Rizzo, A.; Luo, Y.; Zhao, X.; Barone, V. (2009). "Theory for Vibrationally Resolved Two-Photon Circular Dichroism Spectra. Application to (R)-(+)-3-Methylcyclopentanone". J. Phys. Chem. A. 113 (16): 4198–4207. Bibcode:2009JPCA..113.4198L. doi:10.1021/jp8105925. PMID   19253990.
  23. Guillaume, M.; Ruud, K.; Rizzo, A.; Monti, S.; Lin, Z.; Xu, X. (2010). "Computational Study of the One- and Two-Photon Absorption and Circular Dichroism of (L)-Tryptophan". J. Phys. Chem. B. 114 (19): 6500–6512. doi:10.1021/jp1004659. PMID   20420407.
  24. 1 2 3 Tinoco, I. (1975). "Two-Photon Circular Dichroism". J. Chem. Phys. 62 (3): 1006–1009. Bibcode:1975JChPh..62.1006T. doi:10.1063/1.430566.
  25. 1 2 Power, E.A. (1975). "Two-Photon Circular Dichroism". J. Chem. Phys. 63 (4): 1348–1350. Bibcode:1975JChPh..63.1348P. doi:10.1063/1.431521.
  26. Jansík, B.; Rizzo, A.; Agren, H. (2005). "Response Theory Calculations of Two-Photon Circular Dichroism". Chem. Phys. Lett. 414 (4–6): 461–467. Bibcode:2005CPL...414..461J. doi:10.1016/j.cplett.2005.08.114.
  27. Aidas, K.; Angeli, C.; Bak, K.; et al. (2013). "The Dalton quantum chemistry program system". Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (3): 269–284. doi:10.1002/wcms.1172. PMC   4171759 . PMID   25309629.
  28. Friese, D.; Hattig, C.; Rizzo, A. (2016). "Origin-independent two-photon circular dichroism calculations at the coupled cluster level". Phys. Chem. Chem. Phys. 18 (19): 13683–13692. Bibcode:2016PCCP...1813683F. doi: 10.1039/c6cp01653g . hdl: 10037/25281 . PMID   27140590.
  29. Andrews, D.L. (1976). "A Two-Chromophore Model for Two-Photon Circular Dichroism" (PDF). Chem. Phys. 16 (4): 419–424. Bibcode:1976CP.....16..419A. doi:10.1016/0301-0104(76)80088-2.
  30. Meath, W.J.; Power, E.A. (1984). "On the importance of permanent moments in multiphoton absorption using perturbation theory". J. Phys. B: At. Mol. Phys. 17 (5): 763–781. Bibcode:1984JPhB...17..763M. doi:10.1088/0022-3700/17/5/017.
  31. Meath, W.J.; Power, E.A. (1984). "On the effects of diagonal dipole matrix elements in multi-photon resonance profiles using two-level systems as models". Mol. Phys. 51 (3): 585–600. Bibcode:1984MolPh..51..585M. doi:10.1080/00268978400100411.
  32. 1 2 Meath, W.J.; Power, E.A. (1987). "Differential multiphoton absorption by chiral molecules and the effect of permanent moments". J. Phys. B: At. Mol. Phys. 20 (9): 1945–1964. Bibcode:1987JPhB...20.1945M. doi:10.1088/0022-3700/20/9/011.
  33. 1 2 Meath, W.J.; Power, E.A. (1989). "On the Interaction of Elliptically Polarized Light with Molecules; the Effects of Both Permanent and Transition Multipole Moments on Multiphoton Absorption and Chiroptical Effects". J. Mod. Opt. 36 (7): 977–1002. Bibcode:1989JMOp...36..977M. doi:10.1080/09500348914551031.