This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
In genetic genealogy, a unique-event polymorphism (UEP) is a genetic marker that corresponds to a mutation that is likely to occur so infrequently that it is believed overwhelmingly probable that all the individuals who share the marker, worldwide, will have inherited it from the same common ancestor, and the same single mutation event.
Generally, UEP is an allele for which all copies derive from a single mutational event. [1]
In genetic genealogy, the mutations considered to be UEPs can be any germline mutation. They are usually single-nucleotide polymorphisms (SNP) – the replacement of one letter by another in the DNA sequence, and the terms UEP and SNP are often loosely used interchangeably.[ citation needed ] But UEPs may also be large-scale additions, such as the YAP insertion that defines Y-DNA haplogroup DE, inversions or deletions.[ citation needed ]
The discovery and widespread testing of new UEPs has been the key to the increasingly detailed analysis of the patrilineal and matrilineal ancestry of mankind into more distinct family trees of Y-DNA and mtDNA haplogroups. UEPs in X and autosomal chromosomes are also used to trace genealogy, to extend the time ranges available for Y-DNA and mtDNA. [2]
The properties of UEPs can be contrasted with those of short tandem repeat sequences (STRs), the other main type of genetic variation used in genealogical DNA testing.[ citation needed ]
Unlike UEPs, STR sequences are highly variable. There is a significant probability that one of a set may have changed its repeat number after only a few generations. That makes a particular STR haplotype much more specific, matching a much smaller number of people. But, it also means that, at least in the case of Y-STR markers, quite unrelated lineages may have converged to the same combination of Y-STR markers entirely independently by different routes. Matching Y-STR markers by themselves cannot be used to indicate genetic relatedness.[ citation needed ]
The exception is those few cases where Y-STR markers can take on the status of UEPs. This is the case of the occurrence of a large-scale deletion event, which caused a sudden big change in the Y-STR repeat number, rather than the usual single increment or decrement. Such an occurrence can be considered to have been a unique one-off in a group of lineages. Such a change in the Y-STR DYS413, for example, distinguishes subgroup J2a1 from J2a in Y-DNA haplogroup J.[ citation needed ]
In molecular biology, restriction fragment length polymorphism (RFLP) is a technique that exploits variations in homologous DNA sequences, known as polymorphisms, in order to distinguish individuals, populations, or species or to pinpoint the locations of genes within a sequence. The term may refer to a polymorphism itself, as detected through the differing locations of restriction enzyme sites, or to a related laboratory technique by which such differences can be illustrated. In RFLP analysis, a DNA sample is digested into fragments by one or more restriction enzymes, and the resulting restriction fragments are then separated by gel electrophoresis according to their size.
A microsatellite is a tract of repetitive DNA in which certain DNA motifs are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organism's genome. They have a higher mutation rate than other areas of DNA leading to high genetic diversity. Microsatellites are often referred to as short tandem repeats (STRs) by forensic geneticists and in genetic genealogy, or as simple sequence repeats (SSRs) by plant geneticists.
In human genetics, the Y-chromosomal most recent common ancestor is the patrilineal most recent common ancestor (MRCA) from whom all currently living humans are descended. He is the most recent male from whom all living humans are descended through an unbroken line of their male ancestors. The term Y-MRCA reflects the fact that the Y chromosomes of all currently living human males are directly derived from the Y chromosome of this remote ancestor. The analogous concept of the matrilineal most recent common ancestor is known as "Mitochondrial Eve", the most recent woman from whom all living humans are descended matrilineally. As with "Mitochondrial Eve", the title of "Y-chromosomal Adam" is not permanently fixed to a single individual, but can advance over the course of human history as paternal lineages become extinct.
In genetics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome and is present in a sufficiently large fraction of the population. Single nucleotide substitutions with an allele frequency of less than 1% are called "single-nucleotide variants", not SNPs.
A haplotype is a group of alleles in an organism that are inherited together from a single parent.
In biology and genetic genealogy, the most recent common ancestor (MRCA), also known as the last common ancestor (LCA) or concestor, of a set of organisms is the most recent individual from which all the organisms of the set are descended. The term is also used in reference to the ancestry of groups of genes (haplotypes) rather than organisms.
A genetic marker is a gene or DNA sequence with a known location on a chromosome that can be used to identify individuals or species. It can be described as a variation that can be observed. A genetic marker may be a short DNA sequence, such as a sequence surrounding a single base-pair change, or a long one, like minisatellites.
Indel is a molecular biology term for an insertion or deletion of bases in the genome of an organism. It is classified among small genetic variations, measuring from 1 to 10 000 base pairs in length, including insertion and deletion events that may be separated by many years, and may not be related to each other in any way. A microindel is defined as an indel that results in a net change of 1 to 50 nucleotides.
A genealogical DNA test is a DNA-based genetic test used in genetic genealogy that looks at specific locations of a person's genome in order to find or verify ancestral genealogical relationships, or to estimate the ethnic mixture of an individual. Since different testing companies use different ethnic reference groups and different matching algorithms, ethnicity estimates for an individual vary between tests, sometimes dramatically.
A haplotype is a group of alleles in an organism that are inherited together from a single parent, and a haplogroup is a group of similar haplotypes that share a common ancestor with a single-nucleotide polymorphism mutation. More specifically, a haplogroup is a combination of alleles at different chromosomal regions that are closely linked and that tend to be inherited together. As a haplogroup consists of similar haplotypes, it is usually possible to predict a haplogroup from haplotypes. Haplogroups pertain to a single line of descent. As such, membership of a haplogroup, by any individual, relies on a relatively small proportion of the genetic material possessed by that individual.
Haplogroup DE is a human Y-chromosome DNA haplogroup. It is defined by the single nucleotide polymorphism (SNP) mutations, or UEPs, M1(YAP), M145(P205), M203, P144, P153, P165, P167, P183. DE is unique because it is distributed in several geographically distinct clusters. An immediate subclade, haplogroup D, is mainly found in East Asia, parts of Central Asia, and the Andaman Islands, but also sporadically in West Africa and West Asia. The other immediate subclade, haplogroup E, is common in Africa, and to a lesser extent the Middle East and southern Europe.
The Sorenson Molecular Genealogy Foundation (SMGF) was an independent DNA and genealogical research institution with the goal of demonstrating how the peoples of the world are related. SMGF collected DNA samples and genealogical information from individuals across the globe to establish these connections.
In human genetics, Haplogroup G-M285, also known as Haplogroup G1, is a Y-chromosome haplogroup. Haplogroup G1 is a primary subclade of haplogroup G.
In human genetics, Haplogroup G-P303 is a Y-chromosome haplogroup. It is a branch of haplogroup G (Y-DNA) (M201). In descending order, G-P303 is additionally a branch of G2 (P287), G2a (P15), G2a2, G2a2b, G2a2b2, and finally G2a2b2a. This haplogroup represents the majority of haplogroup G men in most areas of Europe west of Russia and the Black Sea. To the east, G-P303 is found among G persons across the Middle East, Iran, the southern Caucasus area, China, and India. G-P303 exhibits its highest diversity in the Levant.
A Y-SNP is a single-nucleotide polymorphism on the Y chromosome. Y-SNPs are often used in paternal genealogical DNA testing.
mt-SNP is a single nucleotide polymorphism on the mitochondrial chromosome. mt-SNPs are often used in maternal genealogical DNA testing.
The relationship of the Mayas to other indigenous peoples of the Americas has been assessed using traditional genetic markers. Mayas inhabited several parts of Mexico and Central America, including Chiapas, the northern lowlands of the Yucatán Peninsula, the southern lowlands and highlands of Guatemala, Belize, and parts of western El Salvador and Honduras. Genetic studies of the Maya people are reported to show higher levels of variation when compared to other groups.
{{cite book}}
: CS1 maint: others (link)