Unit doublet

Last updated

In mathematics, the unit doublet is the derivative of the Dirac delta function. It can be used to differentiate signals in electrical engineering: [1] If u1 is the unit doublet, then

Dirac delta function pseudo-function δ such that an integral of δ(x-c)f(x) always takes the value of f(c)

In mathematics, the Dirac delta function is a generalized function or distribution introduced by the physicist Paul Dirac. It is used to model the density of an idealized point mass or point charge as a function equal to zero everywhere except for zero and whose integral over the entire real line is equal to one. As there is no function that has these properties, the computations made by the theoretical physicists appeared to mathematicians as nonsense until the introduction of distributions by Laurent Schwartz to formalize and validate the computations. As a distribution, the Dirac delta function is a linear functional that maps every function to its value at zero. The Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1, is a discrete analog of the Dirac delta function.

Electrical engineering field of engineering that deals with electricity

Electrical engineering is a technical discipline concerned with the study, design and application of equipment, devices and systems which use electricity, electronics, and electromagnetism. It emerged as an identified activity in the latter half of the 19th century after commercialization of the electric telegraph, the telephone, and electrical power generation, distribution and use.

where is the convolution operator. [2]

Convolution mathematical operation

In mathematics convolution is a mathematical operation on two functions to produce a third function that expresses how the shape of one is modified by the other. The term convolution refers to both the result function and to the process of computing it. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, it differs from cross-correlation only in that either f (x) or g(x) is reflected about the y-axis; thus it is a cross-correlation of f (x) and g(−x), or f (−x) and g(x). For continuous functions, the cross-correlation operator is the adjoint of the convolution operator.

The function is zero for all values except zero, where its behaviour is interesting. Its integral over any interval enclosing zero is zero. However, the integral of its absolute value over any region enclosing zero goes to infinity. The function can be thought of as the limiting case of two rectangles, one in the second quadrant, and the other in the fourth. The length of each rectangle is k, whereas their breadth is 1/k2, where k tends to zero.

In mathematics, a limiting case of a mathematical object is a special case that arises when one or more components of the object take on their most extreme possible values. For example:

Related Research Articles

Area Quantity that expresses the extent of a two-dimensional surface or shape, or planar lamina, in the plane

Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the two-dimensional surface of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analog of the length of a curve or the volume of a solid.

B-spline

In the mathematical subfield of numerical analysis, a B-spline, or basis spline, is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition. Any spline function of given degree can be expressed as a linear combination of B-splines of that degree. Cardinal B-splines have knots that are equidistant from each other. B-splines can be used for curve-fitting and numerical differentiation of experimental data.

In probability theory and statistics, a probability distribution is a mathematical function that provides the probabilities of occurrence of different possible outcomes in an experiment. In more technical terms, the probability distribution is a description of a random phenomenon in terms of the probabilities of events. For instance, if the random variable X is used to denote the outcome of a coin toss, then the probability distribution of X would take the value 0.5 for X = heads, and 0.5 for X = tails. Examples of random phenomena can include the results of an experiment or survey.

White noise random signal having equal intensity at different frequencies, giving it a constant power spectral density

In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines, including physics, acoustical engineering, telecommunications, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, rather than to any specific signal. White noise draws its name from white light, although light that appears white generally does not have a flat power spectral density over the visible band.

Fourier transform mathematical transform that expresses a mathematical function of time as a function of frequency

The Fourier transform (FT) decomposes (analyzes) a function of time into its constituent frequencies. This is similar to the way a musical chord can be expressed in terms of the volumes and frequencies of its constituent notes. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of time. The Fourier transform of a function of time is itself a complex-valued function of frequency, whose magnitude (modulus) represents the amount of that frequency present in the original function, and whose argument is the phase offset of the basic sinusoid in that frequency. The Fourier transform is not limited to functions of time, but the domain of the original function is commonly referred to as the time domain. There is also an inverse Fourier transform that mathematically synthesizes the original function from its frequency domain representation.

Cauchys integral theorem theorem

In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if two different paths connect the same two points, and a function is holomorphic everywhere in between the two paths, then the two path integrals of the function will be the same.

In complex analysis, an elliptic function is a meromorphic function that is periodic in two directions. Just as a periodic function of a real variable is defined by its values on an interval, an elliptic function is determined by its values on a fundamental parallelogram, which then repeat in a lattice. Such a doubly periodic function cannot be holomorphic, as it would then be a bounded entire function, and by Liouville's theorem every such function must be constant. In fact, an elliptic function must have at least two poles in a fundamental parallelogram, as it is easy to show using the periodicity that a contour integral around its boundary must vanish, implying that the residues of all simple poles must cancel.

Residue theorem the theorem that complex contour integrals are simply the sums of residues of singularities contained within the contour

In complex analysis, a discipline within mathematics, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. From a geometrical perspective, it is a special case of the generalized Stokes' theorem.

Heaviside step function discontinuous function whose value is zero for negative numbers and one for positive numbers

The Heaviside step function, or the unit step function, usually denoted by H or θ, is a discontinuous function, named after Oliver Heaviside (1850–1925), whose value is zero for negative arguments and one for positive arguments. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that are of historical importance. They are found in the description of the motion of a pendulum, as well as in the design of the electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation sn for sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi (1829).

Sinc function Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the cardinal sine function or sinc function, denoted by sinc(x), has two slightly different definitions.

Dirac comb

In mathematics, a Dirac comb is a periodic tempered distribution constructed from Dirac delta functions

Linear time-invariant theory, commonly known as LTI system theory, investigates the response of a linear and time-invariant system to an arbitrary input signal. Trajectories of these systems are commonly measured and tracked as they move through time, but in applications like image processing and field theory, the LTI systems also have trajectories in spatial dimensions. Thus, these systems are also called linear translation-invariant to give the theory the most general reach. In the case of generic discrete-time systems, linear shift-invariant is the corresponding term. A good example of LTI systems are electrical circuits that can be made up of resistors, capacitors, and inductors.. It has been used in applied mathematics and has direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas.

Uniform distribution (continuous) uniform distribution on an interval

In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of symmetric probability distributions such that for each member of the family, all intervals of the same length on the distribution's support are equally probable. The support is defined by the two parameters, a and b, which are its minimum and maximum values. The distribution is often abbreviated U(a,b). It is the maximum entropy probability distribution for a random variable X under no constraint other than that it is contained in the distribution's support.

The Komar mass of a system is one of several formal concepts of mass that are used in general relativity. The Komar mass can be defined in any stationary spacetime, which is a spacetime in which all the metric components can be written so that they are independent of time. Alternatively, a stationary spacetime can be defined as a spacetime which possesses a timelike Killing vector field.

Weierstrass transform "Smoothing" integral transform

In mathematics, the Weierstrass transform of a function f : RR, named after Karl Weierstrass, is a "smoothed" version of f(x) obtained by averaging the values of f, weighted with a Gaussian centered at x.

The fundamental theorem of calculus is a theorem that links the concept of differentiating a function with the concept of integrating a function.

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral as well, although that is typically reserved for line integrals in the complex plane.

Lebesgue integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the x-axis. The Lebesgue integral extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.

References

  1. "Signals and Systems Lecture #4" (PDF). Mit.edu. 16 September 2003. Archived from the original (PDF) on 19 February 2009. Retrieved 2 September 2009.
  2. [ dead link ]