Upstream contamination

Last updated
Particles can climb up the falling water while preparing a mate beverage. Upstream contamination in mate beverage.jpg
Particles can climb up the falling water while preparing a mate beverage.

Upstream contamination by floating particles is a counterintuitive phenomenon in fluid dynamics. When pouring water from a higher container to a lower one, particles floating in the latter can climb upstream into the upper container. A definitive explanation is still lacking: experimental and computational evidence indicates that the contamination is chiefly driven by surface tension gradients, however the phenomenon is also affected by the dynamics of swirling flows that remain to be fully investigated.

Contents

Origins

Experimental setup for creating a constant flow of water falling from a higher to a lower recipient. Experimental setup for upstream contamination.gif
Experimental setup for creating a constant flow of water falling from a higher to a lower recipient.

The phenomenon was observed in 2008 by the Argentine Sebastian Bianchini during mate tea preparation, while studying physics at the University of Havana.

It rapidly attracted the interest of professor Alejandro Lage-Castellanos, who performed, with Bianchini, a series of controlled experiments. Later on professor Ernesto Altshuler completed the trio in Havana, which resulted in the Diploma thesis of Bianchini and a short original paper posted in the web arXiv [1] and mentioned as a surprising fact in some online journals. [2] [3] [4] [5]

Bianchini's Diploma thesis showed that the phenomenon could be reproduced in a controlled laboratory setting using mate leaves or chalk powder as contaminants, and that temperature gradients (hot in the top, cold in the bottom) were not necessary to generate the effect. The research also showed that surface tension was key to the explanation through the Marangoni effect. This was suggested by two facts: (a) both mate and chalk lowered the surface tension of water, and (b) if an industrial surfactant was added on the upper reservoir, the upstream motion of particles would stop.

Confirmation

After a talk by Lage-Castellanos at the First Workshop on Complex Matter Physics in Havana (MarchCOMeeting'2012), professor Troy Shinbrot of Rutgers University became interested in the subject. Together with student Theo Siu, Cuban results were confirmed and expanded with new experiments and numerical simulations at Rutgers, which resulted in a joint peer-reviewed paper. [6]

Later on, the phenomenon was confirmed independently by others. [7] Whether dynamical behaviors of the falling water play a role remains as an open question.

Videos of the effect are available on YouTube. [8] [7]

Implications

The phenomenon of upstream contamination could be relevant to industrial and biotechnological processes, and may be connected even to movements of the protoplasm. It could imply that some of the good practices in industrial and biotechnological procedures need revision.

See also

Related Research Articles

<span class="mw-page-title-main">Boiling</span> Rapid phase transition from liquid to gas or vapour

Boiling is the rapid phase transition from liquid to gas or vapor; the reverse of boiling is condensation. Boiling occurs when a liquid is heated to its boiling point, so that the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. Boiling and evaporation are the two main forms of liquid vapourization.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Water purification</span> Process of removing impurities from water

Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for human consumption, but water purification may also be carried out for a variety of other purposes, including medical, pharmacological, chemical, and industrial applications. The history of water purification includes a wide variety of methods. The methods used include physical processes such as filtration, sedimentation, and distillation; biological processes such as slow sand filters or biologically active carbon; chemical processes such as flocculation and chlorination; and the use of electromagnetic radiation such as ultraviolet light.

<span class="mw-page-title-main">Cleanroom</span> Dust-free room for research or production

A cleanroom or clean room is an engineered space, which maintains a very low concentration of airborne particulates. It is well isolated, well-controlled from contamination, and actively cleansed. Such rooms are commonly needed for scientific research, and in industrial production for all nanoscale processes, such as semiconductor manufacturing. A cleanroom is designed to keep everything from dust, to airborne organisms, or vaporised particles, away from it, and so from whatever material is being handled inside it.

<span class="mw-page-title-main">Centrifugation</span> Mechanical process

Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate away from the axis of the centrifuge, while the less dense components of the mixture migrate towards the axis. Chemists and biologists may increase the effective gravitational force of the test tube so that the precipitate (pellet) will travel quickly and fully to the bottom of the tube. The remaining liquid that lies above the precipitate is called a supernatant or supernate.

<span class="mw-page-title-main">Hydrogeology</span> Study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably.

<span class="mw-page-title-main">Granular convection</span> Movement in granular material

Granular convection is a phenomenon where granular material subjected to shaking or vibration will exhibit circulation patterns similar to types of fluid convection. It is sometimes called the Brazil nut effect, when the largest of irregularly shaped particles end up on the surface of a granular material containing a mixture of variously sized objects. This name derives from the example of a typical container of mixed nuts, in which the largest will be Brazil nuts. The phenomenon is also known as the muesli effect since it is seen in packets of breakfast cereal containing particles of different sizes but similar density, such as muesli mix.

Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. It is the study of the motions of ionized particles or molecules and their interactions with electric fields and the surrounding fluid. The term may be considered to be synonymous with the rather elaborate electrostrictive hydrodynamics. ESHD covers the following types of particle and fluid transport mechanisms: electrophoresis, electrokinesis, dielectrophoresis, electro-osmosis, and electrorotation. In general, the phenomena relate to the direct conversion of electrical energy into kinetic energy, and vice versa.

<span class="mw-page-title-main">Marangoni effect</span> Physical phenomenon between two fluids

The Marangoni effect is the mass transfer along an interface between two phases due to a gradient of the surface tension. In the case of temperature dependence, this phenomenon may be called thermo-capillary convection.

<span class="mw-page-title-main">Tears of wine</span>

The phenomenon called tears of wine is manifested as a ring of clear liquid, near the top of a glass of wine, from which droplets continuously form and drop back into the wine. It is most readily observed in a wine which has a high alcohol content. It is also referred to as wine legs, fingers, curtains, church windows, or feet.

In fluid mechanics, added mass or virtual mass is the inertia added to a system because an accelerating or decelerating body must move some volume of surrounding fluid as it moves through it. Added mass is a common issue because the object and surrounding fluid cannot occupy the same physical space simultaneously. For simplicity this can be modeled as some volume of fluid moving with the object, though in reality "all" the fluid will be accelerated, to various degrees.

<span class="mw-page-title-main">Plume (fluid dynamics)</span> Column of one fluid moving through another

In hydrodynamics, a plume or a column is a vertical body of one fluid moving through another. Several effects control the motion of the fluid, including momentum (inertia), diffusion and buoyancy. Pure jets and pure plumes define flows that are driven entirely by momentum and buoyancy effects, respectively. Flows between these two limits are usually described as forced plumes or buoyant jets. "Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise. Situations where the density of the plume fluid is greater than its surroundings, but the flow has sufficient initial momentum to carry it some distance vertically, are described as being negatively buoyant.

<span class="mw-page-title-main">First flush</span> Initial surface runoff of a rainstorm

First flush is the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.

A dispersion is a system in which distributed particles of one material are dispersed in a continuous phase of another material. The two phases may be in the same or different states of matter.

<span class="mw-page-title-main">Swimming pool sanitation</span> Overview about the swimming pool sanitation

Swimming pool sanitation is the process of ensuring healthy conditions in swimming pools. Proper sanitation is needed to maintain the visual clarity of water and to prevent the transmission of infectious waterborne diseases.

<span class="mw-page-title-main">River</span> Natural flowing watercourse

A river is a natural flowing watercourse, usually a freshwater stream, flowing on the earth's land surface or inside caves towards another waterbody at a lower elevation, such as an ocean, sea, bay, lake, wetland, or another river. In some cases, a river flows into the ground or becomes dry at the end of its course without reaching another body of water. Small rivers can be referred to by names such as creek, brook, and rivulet. There are no official definitions for the generic term river as applied to geographic features, although in some countries or communities, a stream is defined by its size. Many names for small rivers are specific to geographic location; examples are "run" in some parts of the United States, "burn" in Scotland and Northeast England, and "beck" in Northern England. Sometimes a river is defined as being larger than a creek, but not always; the language is vague.

<span class="mw-page-title-main">Rayleigh–Bénard convection</span> Type of heat transfer within fluids

In fluid thermodynamics, Rayleigh–Bénard convection is a type of natural convection, occurring in a planar horizontal layer of fluid heated from below, in which the fluid develops a regular pattern of convection cells known as Bénard cells. This phenomenon can also manifest where a species denser than the electrolyte is consumed from below and generated at the top. Bénard–Rayleigh convection is one of the most commonly studied convection phenomena because of its analytical and experimental accessibility. The convection patterns are the most carefully examined example of self-organizing nonlinear systems.

<span class="mw-page-title-main">Ice segregation</span> Geological phenomenon

Ice segregation is the geological phenomenon produced by the formation of ice lenses, which induce erosion when moisture, diffused within soil or rock, accumulates in a localized zone. The ice initially accumulates within small collocated pores or pre-existing cracks, and, as long as the conditions remain favorable, continues to collect in the ice layer or ice lens, wedging the soil or rock apart. Ice lenses grow parallel to the surface and several centimeters to several decimeters deep in the soil or rock. Studies between 1990 and present have demonstrated that rock fracture by ice segregation is a more effective weathering process than the freeze-thaw process which older texts proposed.

<span class="mw-page-title-main">Groundwater pollution</span> Ground released seep into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking) or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

<span class="mw-page-title-main">Non-aqueous phase liquid</span>

Non-aqueous phase liquids, or NAPLs, are organic liquid contaminants characterized by their relative immiscibility with water. The most common examples of NAPLs include petroleum products, coal tars, chlorinated solvents, and pesticides, and the strategies employed for their removal from the subsurface environment have expanded since the late-20th century. NAPLs can be released into the environment from a variety of point sources such as improper chemical disposal, leaking underground storage tanks, septic tank effluent, and percolation from spills or landfills. The movement of NAPLs within the subsurface environment is complex and difficult to characterize. Nonetheless, the various parameters that dictate their movement are important to understand in order to determine appropriate remediation strategies. These strategies utilize NAPLs' physical, chemical, and biological properties to minimize their presence in the subsurface.

References

  1. Bianchini, Sebastian; Lage-Castellanos, Alejandro; Altshuler, Ernesto (12 May 2011). "Upstream contamination in water pouring". arXiv: 1105.2585 [physics.flu-dyn].
  2. "Contaminants Can Flow Up Waterfalls, Say Physicists". MIT Technology Review. 17 May 2011. Archived from the original on 24 September 2015.
  3. Greenwood, Veronique (17 May 2011). "Small Particles Can Flow Up Waterfalls, Say Tea-Drinking Physicists". Discover Magazine.
  4. Yirka, Bob (18 May 2011). "Some particles are able to flow up small waterfalls, physicists show". Phys.org.
  5. Grant, Andrew (2 July 2013). "Particles defy gravity, float upstream". Science News.
  6. Bianchini, Sebastian; Lage, Alejandro; Siu, Theo; Shinbrot, Troy; Altshuler, Ernesto (8 September 2013). "Upstream contamination by floating particles". Proceedings of the Royal Society A. 469 (2157): 20130067. Bibcode:2013RSPSA.46930067B. doi: 10.1098/rspa.2013.0067 .
  7. 1 2 "Upstream Contamination by Floating Particles". YouTube. 2014.
  8. A. Lage-Castellanos (7 August 2013). "Upstream contamination by floating particles". YouTube.