This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(November 2011) |
VIPeR is a military robot developed by the Israeli company Elbit Systems and intended for use in warfare. It was unveiled in March, 2007.
At the Modern Day Marine Conference in Quantico, VA, Elbit Systems of America showcased the capabilities of the VIPeR Robot on the Ground Robotics Obstacle Course. This course was specifically designed to push the limits and demonstrate the field capabilities of various robots in simulated battle conditions. The course comprised various terrains, including deep sand, small gravel, areas strewn with brush and debris, and speed bumps. Each participating robot was required to navigate these diverse surfaces, in addition to climbing stairs and maneuvering through a tunnel. Out of the eight robots tested, the VIPeR stood out as one of the most efficient.
The VIPeR robot, designed for enhanced mobility in challenging environments, employs a unique pair of wheel/track systems known as the Galileo Wheel system. This technology, patented by Galileo Mobility Instrument of Israel, allows the wheels to change shape to adapt to various terrains. Additionally, VIPeR features a tail for balance, enabling it to climb stairs and recover from overturns. This capability makes it highly versatile in urban settings, capable of navigating stairs, rubble, dark alleys, caves, and narrow tunnels. As a result, VIPeR serves as a valuable asset for dismounted soldiers by detecting IEDs, booby traps, and alerting them to potential threats.
A notable aspect of VIPeR is its compact design, allowing it to be portable and easily carried by a single person in a backpack along with all necessary gear. Elbit Systems, the manufacturer, has engineered the VIPeR to be lightweight, weighing approximately 11 kg.
VIPeR's small signature enable it to be equipped with various weapons and tools. It is remotely operated through a control harness and a helmet-mounted display. The robot's optional payloads include Pan & Tilt (P&T) cameras, Forward Looking Infrared (FLIR), day/night observation cameras with zoom capabilities, an explosives sniffer, a disrupter, a 9 mm mini-Uzi with a scope and pointer, a grenade releaser, a 4-foot robotic arm, a gripper, and technology for in-building mapping, among other features.
The current operational plan for VIPeR includes deployment with special forces and regular infantry units in high-risk scenarios, such as exploring caves and tunnels, where the safety of human soldiers is a primary concern. Unlike autonomous robots, VIPeR is controlled remotely, relying on human guidance for its operations.
An autonomous robot is a robot that acts without recourse to human control. The first autonomous robots environment were known as Elmer and Elsie, which were constructed in the late 1940s by W. Grey Walter. They were the first robots in history that were programmed to "think" the way biological brains do and meant to have free will. Elmer and Elsie were often labeled as tortoises because of how they were shaped and the manner in which they moved. They were capable of phototaxis which is the movement that occurs in response to light stimulus.
Military robots are autonomous robots or remote-controlled mobile robots designed for military applications, from transport to search & rescue and attack.
The Nomad rover is an uncrewed vehicle designed as a test for such a vehicle to ride on other planets.
The DARPA Grand Challenge is a prize competition for American autonomous vehicles, funded by the Defense Advanced Research Projects Agency, the most prominent research organization of the United States Department of Defense. Congress has authorized DARPA to award cash prizes to further DARPA's mission to sponsor revolutionary, high-payoff research that bridges the gap between fundamental discoveries and military use. The initial DARPA Grand Challenge in 2004 was created to spur the development of technologies needed to create the first fully autonomous ground vehicles capable of completing a substantial off-road course within a limited time. The third event, the DARPA Urban Challenge in 2007, extended the initial Challenge to autonomous operation in a mock urban environment. The 2012 DARPA Robotics Challenge, focused on autonomous emergency-maintenance robots, and new Challenges are still being conceived. The DARPA Subterranean Challenge was tasked with building robotic teams to autonomously map, navigate, and search subterranean environments. Such teams could be useful in exploring hazardous areas and in search and rescue.
The Terrex Infantry Carrier Vehicle (ICV) is an armoured fighting vehicle (AFV) developed by ST Engineering of Singapore and Timoney Technology of Ireland, and produced by ST Engineering Land Systems for the Singapore Army as well as by Turkish auto-maker Otokar as the Yavuz (AV-82) for the Turkish military.
An unmanned ground vehicle (UGV) is a vehicle that operates while in contact with the ground and without an onboard human presence. UGVs can be used for many applications where it may be inconvenient, dangerous, or impossible to have a human operator present. Generally, the vehicle will have a set of sensors to observe the environment, and will either autonomously make decisions about its behavior or pass the information to a human operator at a different location who will control the vehicle through teleoperation.
A rescue robot is a robot designed to aid in the search and rescue of humans. They may assist rescue efforts by searching, mapping, removing rubble, delivering supplies, providing medical treatment or evacuating casualties.
Adaptable robotics are generally based in robot developer kits. This technology is distinguished from static automation due to its capacity to adapt to changing environmental conditions and material features while retaining a degree of predictability required for collaboration. The degree of adaptability is demonstrated in the way these can be moved around and used in different tasks.
The Battlefield Extraction-Assist Robot (BEAR) is a remotely controlled robot developed by Vecna Robotics for use in the extraction of wounded soldiers from the battlefield with no risk to human life. The humanoid robot uses a powerful hydraulics system to carry humans and other heavy objects over long distances and rough terrain, such as stairs.
Mesa Associates' Tactical Integrated Light-Force Deployment Assembly (MATILDA) is a remote controlled surveillance and reconnaissance robot created and designed by the Mesa Robotics Corporation. It is available in many different models such as the Urban Warrior, Block II, and Scout, which feature different combinations of components for increased utility. These options include a sensor mount, manipulator arm, weapon mount, fiber optic reel, remote trailer release, and disrupter mount. When purchased the basic system includes the platform, the control unit, and battery charger.
The Legged Squad Support System (LS3) was a DARPA project for a legged robot which could function autonomously as a packhorse for a squad of soldiers or marines. Like BigDog, its quadruped predecessor, the LS3 was ruggedized for military use, with the ability to operate in hot, cold, wet, and dirty environments. The LS3 was put into storage in late 2015.
A wheelchair is a mobilized form of chair using 2 or more wheels, a footrest and armrest usually cushioned. It is used when walking is difficult or impossible to do due to illnesses, injury, disabilities, or age related health conditions.
Justin is an autonomous and programmable humanoid robot with two arms, developed by the German Aerospace Center (DLR) at the Institute of Robotics and Mechatronics, located in Wessling, Germany. Introduced in 2009, this wireless robot is controllable through telepresence, a type of technology that allows a person to feel as if he or she were present from a location other than his or her true location.
The Learning Applied to Ground Vehicles (LAGR) program, which ran from 2004 until 2008, had the goal of accelerating progress in autonomous, perception-based, off-road navigation in robotic unmanned ground vehicles (UGVs). LAGR was funded by DARPA, a research agency of the United States Department of Defense.
Cybathlon, a project of ETH Zurich, acts as a platform that challenges teams from all over the world to develop assistive technologies suitable for everyday use with and for people with disabilities. The driving force behind CYBATHLON is international competitions and events, in which teams consisting of technology developers from universities, companies or NGOs and a person with disabilities (pilot) tackle unsolved everyday tasks with their latest assistive technologies. Besides the actual competition, the Cybathlon offers a benchmarking platform to drive forward research on assistance systems for dealing with daily-life challenges, and to promote dialogue with the public for the inclusion of people with disabilities in society. The involvement of the pilot is considered essential both to the competition and in the development process, to ensure that the perspective and needs of end users are considered and addressed.
The Tactical Robotics Cormorant, formerly AirMule or Mule, Israel Defense Forces (IDF) codename Pereira, is a flying car unmanned aerial vehicle (UAV) built by Tactical Robotics Ltd., a subsidiary of designer Rafi Yoeli's Urban Aeronautics Ltd., in Yavne, Israel. It will be used in search and rescue operations where it is too dangerous or inaccessible for a helicopter, such as evacuating people from the upper stories of burning buildings, or delivering and extracting police and soldiers while very close to structures, narrow streets, or through holes into confined spaces.
Surface Robotics Laboratory is one of the major R & D Groups in the field of Robotics in Central Mechanical Engineering Research Institute. This group is actively engaged in the development of experimental mobile robots for various unconventional applications.
Remote Applications in Challenging Environments (RACE) is a remote handling and robotics test facility located at Culham Science Centre near Oxford, UK, operated by UKAEA. As part of the UK Government's Robotics and Autonomous Systems Strategy (RAS) this is one of the initiatives that is supporting development and growth in remote handling. RACE uses the broad range of expertise from UKAEA and CCFE's past experience in remote handling used on JET.
The Sabrah Light Tank is a light tank or tank destroyer designed by Elbit Systems. Two variants of the Sabrah exist: