Value tree analysis

Last updated
instance for Value Tree Analysis MtDNA tree analysis in Southeast Asia.jpg
instance for Value Tree Analysis

Value tree analysis is a multi-criteria decision-making (MCDM) implement by which the decision-making attributes for each choice to come out with a preference for the decision makes are weighted. [1] Usually, choices' attribute-specific values are aggregated into a complete method. Decision analysts (DAs) distinguished two types of utility. [2] The preferences of value are made among alternatives when there is no uncertainty. Risk preferences solves the attitude of DM to risk taking under uncertainty. This learning package focuses on deterministic choices, namely value theory, and in particular a decision analysis tool called a value tree. [2]

Contents

History

The concept of utility was used by Daniel Bernoulli (1738) first in 1730s while explaining the evaluation of St Petersburg paradox, a specific uncertain gable. He explained that money was not enough to measure how much value is. For an individual, however, the worth of money was a non-linear function. This discovery led to the emergence of utility theory, which is a numerical measure that indicates how much value alternative choices have. With the development of decision analysis, utility played an important role in the explanation of economics behavior. Some utilitarian philosophers like Bentham and Mill took advantage of it as an implement to build a certain kind of ethics theory either. Nevertheless, there was no possibility of measuring one's utility function. Moreover, the theory was not so important as in practice. With the time past, the utility theory gradually based on a solid theoretical foundation. People started to use theory of games to explain the behavior of those who are rational and calm when engaging with others with conflict happening. In 1944 John von Neumann and Oskar Morgenstern's Theory of Games and Economic Behavior was published. Afterwards, it emerged since it has become of the key implement researchers and practitioners from statistics and operations research use to give a helping hand to decision makers when it was hard to make a decision. Decision analysts can be separated into two sorts of utility. The attitude of decision makers towards uncertain risk are solved by risk preference. [3]

Process

The goal of the value tree analysis process is to offer a well-organized way to think and discuss about alternatives and support subjective judgements which are critical for correct or excellent decisions. The phases of process of the value tree analysis is shown as below:

  1. Problem structuring:
    • defining the decision context
    • identifying the objectives
    • generating and identifying decision alternatives
    • creating a hierarchical model of the objectives
    • specifying the attributes
  2. Preference elicitation
  3. Recommended decision
  4. Sentitvity analysis

These processes are usually large and iterative. For example, problem structure, collection of related information, and modeling of DM preferences often require a lot of work. DM's perception of the problem and preferences for results not previously considered may change and evolve during this process.

Methodology

Value tree was built to be an effective and essential technique for improving and enhancing goals and values by several aspects. The tree analysis displays a visual mode to problems that used to be only available in a verbal mode. Plus separate aspects, thoughts and opinions are united to a single visual representation, which gives birth to great clarity, stimulation of creative thinking, and constructive communication.

We take the steps below to create a value tree analysis with an example to help illustrate the steps: [4]

Step1: Initial pool

Using a free brainstorming of all the values as a beginning, by which we mean all the problems which are related to the decision: the goals and criteria, the demands, etc.—all the things which have relevance to decision making. Write down what each value is on a piece of paper.

(A) Begin the process with several things:

(B) Once you've exhausted your thoughts after this very open phase, consider the following topics to help yu come up with comprehensive values, interests, and concerns related to your decision:

Consider who is affected by the decision and what their values might be. Stakeholders may be family, friends, neighbors, society, offspring or other species, but they can be anyone who might be affected by your decision, whether intentional or not.

The lack of awareness of this intangible consequence can easily lead to our regretful decision. Moreover, if there is a disagreement between our intuitive and thorough analysis of decision-making, we are usually not aware of the underlying intangible consequences.

Step2: Clustering

When lacking of ideas, clustering the ideas is an efficient way to move the paper around until similar ideas are gathered together.

Step3: Labeling

Example of creating Value Tree Analysis Value tree creating example.png
Example of creating Value Tree Analysis

Mark each group with a higher level value that holds them together to make each element clearer.

[Example]

As a simplified example, let us assume that some of the initial values we propose are self-determined, family, safe, friend and healthy. Health, safety and self-realization can be grouped together and labeled as "self", where families and friends can be grouped together and labeled as "other".

Step4: Moving up the tree

Seeing whether these groups can be grouped into still larger groups

[Example]

SELF and OTHERS group into OVERALL VALUE.

Step5: Moving down the tree

Also seeing if these groups can be divided into still smaller sub-groups.

[Example]

SELF-ACTUALIZATION could be divided into WORK and RECREATION.

Step6: Moving across the tree

Asking themselves is another valid way to bring new ideas to a tree, whether any additional thoughts at that level can come out(moving across the tree).

[Example]

In addition to FAMILY and FRIENDS, we could add SOCIETY.

The diagram on the right shows the final result of the (still simplified) example. Bold, italic indicates the basic values that were not originally written by us, but were thought of when we tried to fill in the tree. [4]

Tool

PRIME Decisions

PRIME Decisions is a decision helping implement which use PRIME method to analyze incomplete preference information. Novel features are also offered by PRIME Decisions, which gives support to interactive decision process which includes an elicitation tour. PRIME Decisions are seen as an essential catalyst for further applied work due to its practitioners benefit from M. Köksalan et al. (eds.), Multiple Criteria Decision Making in the New Millennium © Springer-Verlag Berlin Heidelberg 2001 166 the explicit recognition of incomplete information. [5]

Web-Hipre

Web-HIPRE, a Java applet, provides help to multiple criteria decision analysis. Moreover, a normal platform is provided for individual and group decision making. People can process the model at the same time at any time. Plus, they can easily have access to the model. It is possible to define links to other websites. All other sorts of information like geography, media files describing the criteria or alternatives can be referred to this link, which help make a better quality of decision support significantly. [6]

Application

Some indicators obtained by process analysis are of great help to the value tree analysis. Especially in the value decomposition of internal operation indicators, the driving indicators of a first-level process indicator are usually the secondary sub-process indicators. For instance, the new product launch cycle (in terms of R&D project to production) is actually driven by two processes: R&D and testing in the company. The standardized R&D and testing process is a key success factor for improving the speed of innovation. To this end, the two process indicators development cycle, test cycle, sample acceptance and other indicators are the vital elements which drive the new product launch cycle indicators. Therefore, combining process analysis is of great significance for the decomposition of indicator value, especially for the decomposition of internal operational indicators. The instances of the main application areas are shown as below: [7]

Application on business, production and services

Budget allocation

Allocating the engineering budget for products and projects annually is always a challenge. With value tree analysis aspects, such as strategic fit, which have no natural evaluation measure, but may have a significant role in decision-making can be included into the analysis. Furthermore, there is likelihood of communication being increased by explicit modelling of the relevant facts and a base for justified decisions is also provided.

Selection of R&D programs

As it is known to all that the risk in high in many R&D programs sometimes, thus the role of a good reason may be as essential as the decision itself. Value tree analysis offers a tool to give support to the reasoning of the selection of the R&D programme and modelling the facts affecting the decision.

Developing and deciding on marketing strategies

For instance, the analysis of new strategies for merchandising gasoline and other products through full-facility service stations.

Application on public policy problems

Analysis of responses to environmental risks

For instance, organization of negotiations between several parties in order to identify compromise regulations for acid rain and identify the objectives of the regulations.

Negotiation for oil and gas leases

Carry out an evaluation report of subcontractors and analyze the criteria which should be used.

Comparisons between alternative energy sources

For instance, organizing a debate about nuclear power, aiding the decision process, and studying value differences between the decision-makers.

Political decisions

Application on medicine

Deciding on the optimal usage and inventory of blood in a blood bank

Helping individuals to understand the risks of different treatments

In addition to the decision-making problems value tree analysis serves also other purposes.

Identifying and reformulating options

Definition of objectives

Providing a common language for communication

Quantification of subjective variables

For instance, a scale which measures the worth of military targets.

Development of value-relevant indices

Application on empirical pilot study variable selection

As value tree analysis is an approach that costs and computes little, it is one of the best choices for time-sensitive variable selection in empirical pilot healthcare studies. Moreover, value tree analysis offers a well-structured and strategic process for decision-making so that pilot study and patient data constraints can be accounted for and value for study stakeholders can be maximized. [1]

Application on Coaching

Value tree analysis help creative and critical thinking and organize the thoughts in a logical way. Moreover, when a decision has come up, value tree analysis can also be an effective way to think about one's core goals and values. Afterwards, we can actively look for decision opportunities with the analysis done before. [8] [9] [10]

Softwares

DA software tools and vendors Software table.png
DA software tools and vendors

The software tools of value tree analysis are shown in the picture below: [11]

Related Research Articles

Rational choice theory refers to a set of guidelines that help understand economic and social behaviour. The theory originated in the eighteenth century and can be traced back to political economist and philosopher, Adam Smith. The theory postulates that an individual will perform a cost-benefit analysis to determine whether an option is right for them. It also suggests that an individual's self-driven rational actions will help better the overall economy. Rational choice theory looks at three concepts: rational actors, self interest and the invisible hand.

As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosophers such as Jeremy Bentham and John Stuart Mill. The term has been adapted and reapplied within neoclassical economics, which dominates modern economic theory, as a utility function that represents a consumer's ordinal preferences over a choice set, but is not necessarily comparable across consumers or possessing a cardinal interpretation. This concept of utility is personal and based on choice rather than on pleasure received, and so requires fewer behavioral assumptions than the original concept.

Arrow's impossibility theorem, the general possibility theorem or Arrow's paradox is an impossibility theorem in social choice theory that states that when voters have three or more distinct alternatives (options), no ranked voting electoral system can convert the ranked preferences of individuals into a community-wide ranking while also meeting the specified set of criteria: unrestricted domain, non-dictatorship, Pareto efficiency, and independence of irrelevant alternatives. The theorem is often cited in discussions of voting theory as it is further interpreted by the Gibbard–Satterthwaite theorem. The theorem is named after economist and Nobel laureate Kenneth Arrow, who demonstrated the theorem in his doctoral thesis and popularized it in his 1951 book Social Choice and Individual Values. The original paper was titled "A Difficulty in the Concept of Social Welfare".

<span class="mw-page-title-main">Prospect theory</span> Theory of behavioral economics and behavioral finance

Prospect theory is a theory of behavioral economics and behavioral finance that was developed by Daniel Kahneman and Amos Tversky in 1979. The theory was cited in the decision to award Kahneman the 2002 Nobel Memorial Prize in Economics.

In economics, time preference is the current relative valuation placed on receiving a good or some cash at an earlier date compared with receiving it at a later date.

<span class="mw-page-title-main">Decision-making</span> Cognitive process to choose a course of action or belief

In psychology, decision-making is regarded as the cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be either rational or irrational. The decision-making process is a reasoning process based on assumptions of values, preferences and beliefs of the decision-maker. Every decision-making process produces a final choice, which may or may not prompt action.

<span class="mw-page-title-main">Decision theory</span> Branch of applied probability theory

Decision theory is a branch of applied probability theory and analytic philosophy concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical consequences to the outcome.

The expected utility hypothesis is a popular concept in economics that serves as a reference guide for decision making when the payoff is uncertain. The theory describes which options rational individuals should choose in a situation with uncertainty, based on their risk aversion.

Status quo bias is an emotional bias; a preference for the maintenance of one's current or previous state of affairs, or a preference to not undertake any action to change this current or previous state. The current baseline is taken as a reference point, and any change from that baseline is perceived as a loss or gain. Corresponding to different alternatives, this current baseline or default option is perceived and evaluated by individuals as a positive.

<span class="mw-page-title-main">Multiple-criteria decision analysis</span> Operations research that evaluates multiple conflicting criteria in decision making

Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making. Conflicting criteria are typical in evaluating options: cost or price is usually one of the main criteria, and some measure of quality is typically another criterion, easily in conflict with the cost. In purchasing a car, cost, comfort, safety, and fuel economy may be some of the main criteria we consider – it is unusual that the cheapest car is the most comfortable and the safest one. In portfolio management, managers are interested in getting high returns while simultaneously reducing risks; however, the stocks that have the potential of bringing high returns typically carry high risk of losing money. In a service industry, customer satisfaction and the cost of providing service are fundamental conflicting criteria.

Decision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders.

<span class="mw-page-title-main">Analytic hierarchy process</span> Structured technique for organizing and analyzing complex decisions

In the theory of decision making, the analytic hierarchy process (AHP), also analytical hierarchy process, is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Thomas L. Saaty in the 1970s; Saaty partnered with Ernest Forman to develop Expert Choice software in 1983, and AHP has been extensively studied and refined since then. It represents an accurate approach to quantifying the weights of decision criteria. Individual experts’ experiences are utilized to estimate the relative magnitudes of factors through pair-wise comparisons. Each of the respondents compares the relative importance of each pair of items using a specially designed questionnaire.

Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a collective decision or social welfare in some sense. Whereas choice theory is concerned with individuals making choices based on their preferences, social choice theory is concerned with how to translate the preferences of individuals into the preferences of a group. A non-theoretical example of a collective decision is enacting a law or set of laws under a constitution. Another example is voting, where individual preferences over candidates are collected to elect a person that best represents the group's preferences.

Pairwise comparison generally is any process of comparing entities in pairs to judge which of each entity is preferred, or has a greater amount of some quantitative property, or whether or not the two entities are identical. The method of pairwise comparison is used in the scientific study of preferences, attitudes, voting systems, social choice, public choice, requirements engineering and multiagent AI systems. In psychology literature, it is often referred to as paired comparison.

The rational planning model is a model of the planning process involving a number of rational actions or steps. Taylor (1998) outlines five steps, as follows:

Choice modelling attempts to model the decision process of an individual or segment via revealed preferences or stated preferences made in a particular context or contexts. Typically, it attempts to use discrete choices in order to infer positions of the items on some relevant latent scale. Indeed many alternative models exist in econometrics, marketing, sociometrics and other fields, including utility maximization, optimization applied to consumer theory, and a plethora of other identification strategies which may be more or less accurate depending on the data, sample, hypothesis and the particular decision being modelled. In addition, choice modelling is regarded as the most suitable method for estimating consumers' willingness to pay for quality improvements in multiple dimensions.

Decision-making software is software for computer applications that help individuals and organisations make choices and take decisions, typically by ranking, prioritizing or choosing from a number of options.

In decision theory, economics, and finance, a two-moment decision model is a model that describes or prescribes the process of making decisions in a context in which the decision-maker is faced with random variables whose realizations cannot be known in advance, and in which choices are made based on knowledge of two moments of those random variables. The two moments are almost always the mean—that is, the expected value, which is the first moment about zero—and the variance, which is the second moment about the mean.

In economics and other social sciences, preference refers to the order in which an agent ranks alternatives based on their relative utility. The process results in an "optimal choice". Preferences are evaluations and concern matter of value, typically in relation to practical reasoning. An individual's preferences are determined purely by a person's tastes as opposed to the good's prices, personal income, and the availability of goods. However, people are still expected to act in their best (rational) interest. In this context, rationality would dictate that an individual will select the option that maximizes self-interest when given a choice. Moreover, in every set of alternatives, preferences arise.

In psychology, economics and philosophy, preference is a technical term usually used in relation to choosing between alternatives. For example, someone prefers A over B if they would rather choose A than B. Preferences are central to decision theory because of this relation to behavior. Some methods such as Ordinal Priority Approach use preference relation for decision-making. As connative states, they are closely related to desires. The difference between the two is that desires are directed at one object while preferences concern a comparison between two alternatives, of which one is preferred to the other.

References

  1. 1 2 E. Kremer, Gül (2011). "Empirical Pilot Study Variable Selection Using Value Tree Analysis". IIE Annual Conference: 1–7.
  2. 1 2 Helsinki University of Technology. "Value Tree Analysis Theory".
  3. P. Hämäläinen, Raimo (2002). "Value Tree Analysis". Decision Making. Retrieved 15 May 2019.
  4. 1 2 F. Anderson, Barry (2002). The Three Secrets of Wise Decision Making. Single Reef Press.
  5. Gustafsson, Janne; Salo, Ahti; Gustafsson, Tommi (2001), PRIME Decisions: An Interactive Tool for Value Tree Analysis, Lecture Notes in Economics and Mathematical Systems, vol. 507, Springer Berlin Heidelberg, pp. 165–176, doi:10.1007/978-3-642-56680-6_15, ISBN   9783540423775
  6. Mustajoki, Jyri; Hämäläinen, Raimo P. (Aug 2000). "Web-Hipre: Global Decision Support By Value Tree And AHP Analysis". INFOR: Information Systems and Operational Research. 38 (3): 208–220. doi:10.1080/03155986.2000.11732409. ISSN   0315-5986. S2CID   17688120.
  7. Shi jie 500 qiang 12 zhong jing dian guan li gong ju. Yang shi kun., 阳士昆. Bei jing: Zhong guo shi dai jing ji chu ban she. 2005. ISBN   7801697693. OCLC   302416795.{{cite book}}: CS1 maint: others (link)
  8. Teuscher, Ursina (January 2013). "Coaching Tool: Creating a Value Tree". ResearchGate.
  9. Keeney, Ralph L. (Aug 1996). "Value-focused thinking: Identifying decision opportunities and creating alternatives". European Journal of Operational Research. 92 (3): 537–549. doi:10.1016/0377-2217(96)00004-5. ISSN   0377-2217.
  10. Keeney, Ralph L. (1997). "Value-focused Thinking: a Path to Creative Decisionmaking". Long Range Planning. 30 (2): 314. doi:10.1016/s0024-6301(97)80025-8. ISSN   0024-6301.
  11. Roy, Bernard (1999), "Decision-Aiding Today: What Should We Expect?", Multicriteria Decision Making, International Series in Operations Research & Management Science, vol. 21, Springer US, pp. 1–35, doi:10.1007/978-1-4615-5025-9_1, ISBN   9781461372837