Variable-range hopping

Last updated

Variable-range hopping is a model used to describe carrier transport in a disordered semiconductor or in amorphous solid by hopping in an extended temperature range. [1] It has a characteristic temperature dependence of

Contents

where is the conductivity and is a parameter dependent on the model under consideration.

Mott variable-range hopping

The Mott variable-range hopping describes low-temperature conduction in strongly disordered systems with localized charge-carrier states [2] and has a characteristic temperature dependence of

for three-dimensional conductance (with = 1/4), and is generalized to d-dimensions

.

Hopping conduction at low temperatures is of great interest because of the savings the semiconductor industry could achieve if they were able to replace single-crystal devices with glass layers. [3]

Derivation

The original Mott paper introduced a simplifying assumption that the hopping energy depends inversely on the cube of the hopping distance (in the three-dimensional case). Later it was shown that this assumption was unnecessary, and this proof is followed here. [4] In the original paper, the hopping probability at a given temperature was seen to depend on two parameters, R the spatial separation of the sites, and W, their energy separation. Apsley and Hughes noted that in a truly amorphous system, these variables are random and independent and so can be combined into a single parameter, the range between two sites, which determines the probability of hopping between them.

Mott showed that the probability of hopping between two states of spatial separation and energy separation W has the form:

where α−1 is the attenuation length for a hydrogen-like localised wave-function. This assumes that hopping to a state with a higher energy is the rate limiting process.

We now define , the range between two states, so . The states may be regarded as points in a four-dimensional random array (three spatial coordinates and one energy coordinate), with the "distance" between them given by the range .

Conduction is the result of many series of hops through this four-dimensional array and as short-range hops are favoured, it is the average nearest-neighbour "distance" between states which determines the overall conductivity. Thus the conductivity has the form

where is the average nearest-neighbour range. The problem is therefore to calculate this quantity.

The first step is to obtain , the total number of states within a range of some initial state at the Fermi level. For d-dimensions, and under particular assumptions this turns out to be

where . The particular assumptions are simply that is well less than the band-width and comfortably bigger than the interatomic spacing.

Then the probability that a state with range is the nearest neighbour in the four-dimensional space (or in general the (d+1)-dimensional space) is

the nearest-neighbour distribution.

For the d-dimensional case then

.

This can be evaluated by making a simple substitution of into the gamma function,

After some algebra this gives

and hence that

.

Non-constant density of states

When the density of states is not constant (odd power law N(E)), the Mott conductivity is also recovered, as shown in this article.

Efros–Shklovskii variable-range hopping

The Efros–Shklovskii (ES) variable-range hopping is a conduction model which accounts for the Coulomb gap, a small jump in the density of states near the Fermi level due to interactions between localized electrons. [5] It was named after Alexei L. Efros and Boris Shklovskii who proposed it in 1975. [5]

The consideration of the Coulomb gap changes the temperature dependence to

for all dimensions (i.e. = 1/2). [6] [7]

See also

Notes

  1. Hill, R. M. (1976-04-16). "Variable-range hopping". Physica Status Solidi A. 34 (2): 601–613. doi:10.1002/pssa.2210340223. ISSN   0031-8965.
  2. Mott, N. F. (1969). "Conduction in non-crystalline materials". Philosophical Magazine. Informa UK Limited. 19 (160): 835–852. doi:10.1080/14786436908216338. ISSN   0031-8086.
  3. P.V.E. McClintock, D.J. Meredith, J.K. Wigmore. Matter at Low Temperatures. Blackie. 1984 ISBN   0-216-91594-5.
  4. Apsley, N.; Hughes, H. P. (1974). "Temperature-and field-dependence of hopping conduction in disordered systems". Philosophical Magazine. Informa UK Limited. 30 (5): 963–972. doi:10.1080/14786437408207250. ISSN   0031-8086.
  5. 1 2 Efros, A. L.; Shklovskii, B. I. (1975). "Coulomb gap and low temperature conductivity of disordered systems". Journal of Physics C: Solid State Physics. 8 (4): L49. doi:10.1088/0022-3719/8/4/003. ISSN   0022-3719.
  6. Li, Zhaoguo (2017). et. al. "Transition between Efros–Shklovskii and Mott variable-range hopping conduction in polycrystalline germanium thin films". Semiconductor Science and Technology. 32 (3): 035010. doi:10.1088/1361-6641/aa5390.
  7. Rosenbaum, Ralph (1991). "Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in InxOy films". Physical Review B. 44 (8): 3599–3603. doi:10.1103/physrevb.44.3599. ISSN   0163-1829.

Related Research Articles

Normal distribution Probability distribution

In statistics, a normal distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselves are not normally distributed.

Multivariate normal distribution Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

Electrical resistivity is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-meter (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

Log-normal distribution Probability distribution

In probability theory, a log-normaldistribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics.

Students <i>t</i>-distribution Probability distribution

In probability and statistics, Student's t-distribution is any member of a family of continuous probability distributions that arise when estimating the mean of a normally distributed population in situations where the sample size is small and the population's standard deviation is unknown. It was developed by English statistician William Sealy Gosset under the pseudonym "Student".

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

Complex conjugate Fundamental operation on complex numbers

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, the complex conjugate of is equal to The complex conjugate of is often denoted as

Spearmans rank correlation coefficient Nonparametric measure of rank correlation

In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation. It assesses how well the relationship between two variables can be described using a monotonic function.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the form

In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.

Seebeck coefficient Measure of voltage induced by change of temperature

The Seebeck coefficient of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. The SI unit of the Seebeck coefficient is volts per kelvin (V/K), although it is more often given in microvolts per kelvin (μV/K).

Hotellings <i>T</i>-squared distribution

In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T2), proposed by Harold Hotelling, is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution. The Hotelling's t-squared statistic (t2) is a generalization of Student's t-statistic that is used in multivariate hypothesis testing.

In statistics, sometimes the covariance matrix of a multivariate random variable is not known but has to be estimated. Estimation of covariance matrices then deals with the question of how to approximate the actual covariance matrix on the basis of a sample from the multivariate distribution. Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in Rp×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. In addition, if the random variable has a normal distribution, the sample covariance matrix has a Wishart distribution and a slightly differently scaled version of it is the maximum likelihood estimate. Cases involving missing data require deeper considerations. Another issue is the robustness to outliers, to which sample covariance matrices are highly sensitive.

First introduced by M. Pollak, the Coulomb gap is a soft gap in the single-particle density of states (DOS) of a system of interacting localized electrons. Due to the long-range Coulomb interactions, the single-particle DOS vanishes at the chemical potential, at low enough temperatures, such that thermal excitations do not wash out the gap.

Normal-inverse-gamma distribution

In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

In solid-state physics, the Poole–Frenkel effect is a model describing the mechanism of trap-assisted electron transport in an electrical insulator. It is named after Yakov Frenkel, who published on it in 1938, extending the theory previously developed by H. H. Poole.

Conductivity near the percolation threshold in physics, occurs in a mixture between a dielectric and a metallic component. The conductivity and the dielectric constant of this mixture show a critical behavior if the fraction of the metallic component reaches the percolation threshold.

Charge transport mechanisms are theoretical models that aim to quantitatively describe the electric current flow through a given medium.