A version vector is a mechanism for tracking changes to data in a distributed system, where multiple agents might update the data at different times. The version vector allows the participants to determine if one update preceded another (happened-before), followed it, or if the two updates happened concurrently (and therefore might conflict with each other). In this way, version vectors enable causality tracking among data replicas and are a basic mechanism for optimistic replication. In mathematical terms, the version vector generates a preorder that tracks the events that precede, and may therefore influence, later updates.
Version vectors maintain state identical to that in a vector clock, but the update rules differ slightly; in this example, replicas can either experience local updates (e.g., the user editing a file on the local node), or can synchronize with another replica:
Pairs of replicas, a, b, can be compared by inspecting their version vectors and determined to be either: identical (), concurrent (), or ordered ( or ). The ordered relation is defined as: Vector if and only if every element of is less than or equal to its corresponding element in , and at least one of the elements is strictly less than. If neither or , but the vectors are not identical, then the two vectors must be concurrent.
Version vectors [1] or variants are used to track updates in many distributed file systems, such as Coda (file system) and Ficus, and are the main data structure behind optimistic replication. [2]
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.
In computer science, a consistency model specifies a contract between the programmer and a system, wherein the system guarantees that if the programmer follows the rules for operations on memory, memory will be consistent and the results of reading, writing, or updating memory will be predictable. Consistency models are used in distributed systems like distributed shared memory systems or distributed data stores. Consistency is different from coherence, which occurs in systems that are cached or cache-less, and is consistency of data with respect to all processors. Coherence deals with maintaining a global order in which writes to a single location or single variable are seen by all processors. Consistency deals with the ordering of operations to multiple locations with respect to all processors.
In computer science and cryptography, Whirlpool is a cryptographic hash function. It was designed by Vincent Rijmen and Paulo S. L. M. Barreto, who first described it in 2000.
A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton Howard Bloom in 1970, that is used to test whether an element is a member of a set. False positive matches are possible, but false negatives are not – in other words, a query returns either "possibly in set" or "definitely not in set". Elements can be added to the set, but not removed ; the more items added, the larger the probability of false positives.
In concurrent programming, an operation is linearizable if it consists of an ordered list of invocation and response events, that may be extended by adding response events such that:
A vector clock is a data structure used for determining the partial ordering of events in a distributed system and detecting causality violations. Just as in Lamport timestamps, inter-process messages contain the state of the sending process's logical clock. A vector clock of a system of N processes is an array/vector of N logical clocks, one clock per process; a local "largest possible values" copy of the global clock-array is kept in each process.
A logical clock is a mechanism for capturing chronological and causal relationships in a distributed system. Often, distributed systems may have no physically synchronous global clock. In many applications, if two processes never interact, the lack of synchronization is unobservable and in these applications it is enough for the processes to agree on the event ordering rather than the wall-clock time. The first logical clock implementation, the Lamport timestamps, was proposed by Leslie Lamport in 1978.
Eventual consistency is a consistency model used in distributed computing to achieve high availability that informally guarantees that, if no new updates are made to a given data item, eventually all accesses to that item will return the last updated value. Eventual consistency, also called optimistic replication, is widely deployed in distributed systems and has origins in early mobile computing projects. A system that has achieved eventual consistency is often said to have converged, or achieved replica convergence. Eventual consistency is a weak guarantee – most stronger models, like linearizability, are trivially eventually consistent.
The Lamport timestamp algorithm is a simple logical clock algorithm used to determine the order of events in a distributed computer system. As different nodes or processes will typically not be perfectly synchronized, this algorithm is used to provide a partial ordering of events with minimal overhead, and conceptually provide a starting point for the more advanced vector clock method. The algorithm is named after its creator, Leslie Lamport.
In computer science, gang scheduling is a scheduling algorithm for parallel systems that schedules related threads or processes to run simultaneously on different processors. Usually these will be threads all belonging to the same process, but they may also be from different processes, where the processes could have a producer-consumer relationship or come from the same MPI program.
In mathematics and computing, universal hashing refers to selecting a hash function at random from a family of hash functions with a certain mathematical property. This guarantees a low number of collisions in expectation, even if the data is chosen by an adversary. Many universal families are known, and their evaluation is often very efficient. Universal hashing has numerous uses in computer science, for example in implementations of hash tables, randomized algorithms, and cryptography.
Commitment ordering (CO) is a class of interoperable serializability techniques in concurrency control of databases, transaction processing, and related applications. It allows optimistic (non-blocking) implementations. With the proliferation of multi-core processors, CO has also been increasingly utilized in concurrent programming, transactional memory, and software transactional memory (STM) to achieve serializability optimistically. CO is also the name of the resulting transaction schedule (history) property, defined in 1988 with the name dynamic atomicity. In a CO compliant schedule, the chronological order of commitment events of transactions is compatible with the precedence order of the respective transactions. CO is a broad special case of conflict serializability and effective means to achieve global serializability across any collection of database systems that possibly use different concurrency control mechanisms.
Causal consistency is one of the major memory consistency models. In concurrent programming, where concurrent processes are accessing a shared memory, a consistency model restricts which accesses are legal. This is useful for defining correct data structures in distributed shared memory or distributed transactions.
A fundamental problem in distributed computing and multi-agent systems is to achieve overall system reliability in the presence of a number of faulty processes. This often requires coordinating processes to reach consensus, or agree on some data value that is needed during computation. Example applications of consensus include agreeing on what transactions to commit to a database in which order, state machine replication, and atomic broadcasts. Real-world applications often requiring consensus include cloud computing, clock synchronization, PageRank, opinion formation, smart power grids, state estimation, control of UAVs, load balancing, blockchain, and others.
In database management, an aggregate function or aggregation function is a function where the values of multiple rows are grouped together to form a single summary value.
Data synchronization is the process of establishing consistency between source and target data stores, and the continuous harmonization of the data over time. It is fundamental to a wide variety of applications, including file synchronization and mobile device synchronization.
Synchronization of chaos is a phenomenon that may occur when two or more dissipative chaotic systems are coupled.
In computing, the count–min sketch is a probabilistic data structure that serves as a frequency table of events in a stream of data. It uses hash functions to map events to frequencies, but unlike a hash table uses only sub-linear space, at the expense of overcounting some events due to collisions. The count–min sketch was invented in 2003 by Graham Cormode and S. Muthu Muthukrishnan and described by them in a 2005 paper.
In distributed computing, a conflict-free replicated data type (CRDT) is a data structure that is replicated across multiple computers in a network, with the following features:
The Java programming language's Java Collections Framework version 1.5 and later defines and implements the original regular single-threaded Maps, and also new thread-safe Maps implementing the java.util.concurrent.ConcurrentMap
interface among other concurrent interfaces. In Java 1.6, the java.util.NavigableMap
interface was added, extending java.util.SortedMap
, and the java.util.concurrent.ConcurrentNavigableMap
interface was added as a subinterface combination.