Virescence

Last updated
Knolliger Hahnenfuss (Ranunculus bulbosus) 'Pleniflorus' 5861.JPG

Virescence is the abnormal development of green pigmentation in plant parts that are not normally green, like shoots or flowers (in which case it is known as floral virescence). [1] Virescence is closely associated with phyllody (the abnormal development of flower parts into leaves) and witch's broom (the abnormal growth of a dense mass of shoots from a single point). They are often symptoms of the same disease affecting the plants, typically those caused by phytoplasmas. [2] The term chloranthy is also sometimes used for floral virescence, though it is more commonly used for phyllody. [3]

Contents

The term was coined around 1825, from Latin virescere, "to become green". In the English language the term virescent may also refer to greenness (cf. verdant). [4]

Cause

The main cause of virescence is the presence of phytoplasma, pathogenic microorganisms that infect plants and disrupt their growth. Phytoplasmas often alter normal processes in plants, such as flower color development, leading to virescence. [5] However, there are cases where green flower coloration can also be attributed to genetic factors within the plant itself.

Diagnosing it can be challenging in some cases, as naturally green-colored flowers and genetic factors modifying anthocyanin distribution in plants can mimic its symptoms. For instance, it can be observed in certain Chinese rose varieties and specific clones of periwinkle. While the most notable phytoplasma-associated diseases are commonly reported in commercially grown flowering species, virescence also affects horticultural and seed crops, including tomatoes, cabbages, strawberries, and clover, among others. [6]

Impact

The impacts of virescence can vary depending on the type of plant affected. In commercial flowering plants, virescence can reduce the aesthetic appeal of flowers, potentially impacting their market value and attractiveness to buyers. Additionally, virescence can serve as an indicator of phytoplasma infection, which can cause significant production losses in agricultural and horticultural crops. Therefore, a better understanding of virescence and its influencing factors is crucial for plant disease control and sustainable agriculture management.

See also

Related Research Articles

<i>Botrytis cinerea</i> Species of fungus

Botrytis cinerea is a necrotrophic fungus that affects many plant species, although its most notable hosts may be wine grapes. In viticulture, it is commonly known as "botrytis bunch rot"; in horticulture, it is usually called "grey mould" or "gray mold".

<span class="mw-page-title-main">Fire blight</span> Disease of some Rosaceae trees (especially apples and pears) caused by Erwinia amylovora

Fire blight, also written fireblight, is a contagious disease affecting apples, pears, and some other members of the family Rosaceae. It is a serious concern to apple and pear producers. Under optimal conditions, it can destroy an entire orchard in a single growing season.

<i>Trillium grandiflorum</i> Species of flowering plant

Trillium grandiflorum, the white trillium, large-flowered trillium, great white trillium, white wake-robin or French: trille blanc, is a species of flowering plant in the family Melanthiaceae. A monocotyledonous, herbaceous perennial, the plant is native to eastern North America, from northern Quebec to the southern parts of the United States through the Appalachian Mountains into northernmost Georgia and west to Minnesota. There are also several isolated populations in Nova Scotia, Maine, southern Illinois, and Iowa.

<span class="mw-page-title-main">Witch's broom</span> Type of deformity in a woody plant

Witch's broom or witches' broom is a deformity in a woody plant, typically a tree, where the natural structure of the plant is changed. A dense mass of shoots grows from a single point, with the resulting structure resembling a broom or a bird's nest. It is sometimes caused by pathogens.

<span class="mw-page-title-main">Hellebore</span> Genus of plants

Commonly known as hellebores, the Eurasian genus Helleborus consists of approximately 20 species of herbaceous or evergreen perennial flowering plants in the family Ranunculaceae, within which it gave its name to the tribe of Helleboreae. Many hellebore species are poisonous.

<i>Phytoplasma</i> Genus of bacteria

Phytoplasmas are obligate intracellular parasites of plant phloem tissue and of the insect vectors that are involved in their plant-to-plant transmission. Phytoplasmas were discovered in 1967 by Japanese scientists who termed them mycoplasma-like organisms. Since their discovery, phytoplasmas have resisted all attempts at in vitro culture in any cell-free medium; routine cultivation in an artificial medium thus remains a major challenge. Phytoplasmas are characterized by the lack of a cell wall, a pleiomorphic or filamentous shape, a diameter normally less than 1 μm, and a very small genome.

<span class="mw-page-title-main">Waratah</span> Genus of plants in the family Proteaceae from southeastern Australia

The waratah (Telopea) is an Australian-endemic genus of five species of large shrubs or small trees, native to the southeastern parts of Australia. The best-known species in this genus is Telopea speciosissima, which has bright red flowers and is the New South Wales (NSW) state emblem. The waratah is a member of the family Proteaceae, flowering plants distributed in the Southern Hemisphere. The key diagnostic feature of Proteaceae is the inflorescence, which is often very large, brightly coloured and showy, consisting of many small flowers densely packed into a compact head or spike. Species of waratah boast such inflorescences ranging from 6–15 cm in diameter with a basal ring of coloured bracts. The leaves are spirally arranged, 10–20 cm long and 2–3 cm broad with entire or serrated margins. The name waratah comes from the Eora Aboriginal people, the pre-European inhabitants of the Sydney area.

<span class="mw-page-title-main">Citrus greening disease</span> Bacterial disease of citrus, bug-borne

Citrus greening disease or yellow dragon disease is a disease of citrus caused by a vector-transmitted pathogen. The causative agents are motile bacteria, Liberibacter spp. The disease is transmitted by the Asian citrus psyllid, Diaphorina citri, and the African citrus psyllid, Trioza erytreae, also known as the two-spotted citrus psyllid. It has no known cure. It has also been shown to be graft-transmissible.

<span class="mw-page-title-main">Phyllody</span> Abnormal development of floral parts into leafy structures

Phyllody is the abnormal development of floral parts into leafy structures. It is generally caused by phytoplasma or virus infections, though it may also be because of environmental factors that result in an imbalance in plant hormones. Phyllody causes the affected plant to become partially or entirely sterile, as it is unable to produce normal flowers.

<span class="mw-page-title-main">Aster yellows</span> Plant disease

Aster yellows is a chronic, systemic plant disease caused by several bacteria called phytoplasma. The aster yellows phytoplasma (AYP) affects 300 species in 38 families of broad-leaf herbaceous plants, primarily in the aster family, as well as important cereal crops such as wheat and barley. Symptoms are variable and can include phyllody, virescence, chlorosis, stunting, and sterility of flowers. The aster leafhopper vector, Macrosteles quadrilineatus, moves the aster yellows phytoplasma from plant to plant. Its economic burden is primarily felt in the carrot crop industry, as well as the nursery industry. No cure is known for plants infected with aster yellows. Infected plants should be removed immediately to limit the continued spread of the phytoplasma to other susceptible plants. However, in agricultural settings such as carrot fields, some application of chemical insecticides has proven to minimize the rate of infection by killing the vector.

<span class="mw-page-title-main">Phomopsis cane and leaf spot</span> Fungal plant disease

Phomopsis cane and leaf spot occurs wherever grapes are grown. Phomopsis cane and leaf spot is more severe in grape-growing regions characterized by a humid temperate climate through the growing season. Crop losses up to 30% have been reported to be caused by Phomopsis cane and leaf spot.

Pseudomonas viridiflava is a fluorescent, Gram-negative, soil bacterium that is pathogenic to plants. It was originally isolated from the dwarf or runner bean, in Switzerland. Based on 16S rRNA analysis, P. viridiflava has been placed in the P. syringae group. Following ribotypical analysis misidentified strains of Pseudomonas syringae pv. ribicola and Pseudomonas syringae pv. primulae were incorporated into this species. This pathogen causes bacterial blight of Kiwifruit.

<i>Colletotrichum coccodes</i> Pathogenic fungus

Colletotrichum coccodes is a plant pathogen, which causes anthracnose on tomato and black dot disease of potato. Fungi survive on crop debris and disease emergence is favored by warm temperatures and wet weather.

<i>Impatiens necrotic spot orthotospovirus</i> Species of virus

Impatiens necrotic spot orthotospovirus(INSV) is a plant pathogenic virus of the order Bunyavirales. It was originally believed to be another strain of Tomato spotted wilt virus, but genetic investigations revealed them to be separate viruses. It is a negative-strand RNA virus which has a tripartite genome. It is largely spread by the insect vector of the western flower thrips. The virus infects more than 648 species of plants including important horticultural and agricultural species such as fuchsia, tomato, orchids, and lettuce (especially romaine). As the name implies, the main symptom on plants is necrotic spots that appear on the leaves. The INSV virus infects by injecting the RNA the virus contains into the cell which then starts using the cell resources to transcribe what the virus RNA states. Viral infection can often result in the death of the plant. The disease is mainly controlled by the elimination of the western flower thrip vector and by destroying any infected plant material.

Texas Phoenix palm decline, or lethal bronzing, is a plant disease caused by a phytoplasma, Candidatus Phytoplasma palmae. It takes its name from the state it was first identified in and the palm genus, Phoenix, upon which it was first identified. It is currently found in parts of Florida and Texas.

<span class="mw-page-title-main">Sugarcane grassy shoot disease</span> Phytoplasma (bacterial) disease

Sugarcane grassy shoot disease (SCGS), is associated with 'Candidatus Phytoplasma sacchari' which are small, pleomorphic, pathogenic mycoplasma that contribute to yield losses from 5% up to 20% in sugarcane. These losses are higher in the ratoon crop. A higher incidence of SCGS has been recorded in some parts of Southeast Asia and India, resulting in 100% loss in cane yield and sugar production.

<span class="mw-page-title-main">Bacterial wilt of carnation</span> Bacterial plant disease

Bacterial wilt of carnations is a bacterial disease caused by the plant pathogen Paraburkholderia caryophylli. Previously named Pseudomonas caryophilli, the pathogen is an aerobic gram negative bacteria known for only being capable of entering its host through wounds. Once inside the host, it colonizes the vascular system and roots causing symptoms such as, internal stem cracking, yellowing of the leaves, wilting, and the development of cankers. As a bacterial disease, bacterial wilt of carnations can also be characterized by signs such as bacterial streaming, and bacterial ooze.

<i>Candidatus</i> Phytoplasma fraxini Species of bacterium

CandidatusPhytoplasma fraxini is a species of phytoplasma, a specialized group of bacteria which lack a cell wall and attack the phloem of plants. This phytoplasma causes the diseases ash yellows and lilac witches' broom.

<i>Carnation Italian ringspot virus</i> Plant virus impacting carnation plants

Carnation Italian Ringspot Virus (CIRV) is a plant virus that impacts carnation plants. These flowers are a popular choice in ornamental flower arrangements. This article will provide an overview of CIRV. This will include the history of the virus, information on transmission, symptoms, and characteristics, and research about how it relates to plant physiology.

References

  1. Masters, M.T. (1869). Vegetable Teratology, an Account of the Principal Deviations from the Usual Construction of Plants. Robert Hardwicke. p.  240–281.
  2. Hogenhout, S.A.; Šeruga Musić, M. (2010). "Phytoplasma Genomics, from Sequencing to Comparative and Functional Genomics – What Have We Learnt?". In Weintraub, P.G.; Jones, P. (eds.). Phytoplasmas: Genomes, Plant Hosts and Vectors . CABI. pp.  19–37. ISBN   9781845935306.
  3. Shastri, V. (2005). Academic Dictionary Of Biology. Isha Books. ISBN   9788182051874.
  4. "Virescent". Academic Dictionaries and Encyclopedias. Retrieved 10 November 2012.
  5. Davey, J.E.; Van Staden, J.; De Leeuw, G.T.N. (September 1981). "Endogenous cytokinin levels and development of flower virescence in Catharanthus roseus infected with mycoplasmas". Physiological Plant Pathology. 19 (2): 193–200. doi:10.1016/s0048-4059(81)80021-5. ISSN   0048-4059.
  6. Bertaccini, Assunta (2022-05-27). "Plants and Phytoplasmas: When Bacteria Modify Plants". Plants. 11 (11): 1425. doi: 10.3390/plants11111425 . ISSN   2223-7747. PMC   9182842 . PMID   35684198.