Virtual IP address

Last updated

A virtual IP address (VIP or VIPA) is an IP address that does not correspond to a physical network interface. Uses for VIPs include network address translation (especially, one-to-many NAT), fault-tolerance, and mobility.

Contents

Usage

For one-to-many NAT, a VIP address is advertised from the NAT device (often a router), and incoming data packets destined to that VIP address are routed to different actual IP addresses (with address translation). These VIP addresses have several variations and implementation scenarios, including Common Address Redundancy Protocol (CARP) and Proxy ARP. [1] In addition, if there are multiple actual IP addresses, load balancing can be performed as part of NAT.

VIP addresses are also used for connection redundancy by providing alternative fail-over options for one machine. For this to work, the host has to run an interior gateway protocol like Open Shortest Path First (OSPF), and appear as a router to the rest of the network. It advertises virtual links connected via itself to all of its actual network interfaces. If one network interface fails, normal OSPF topology reconvergence will cause traffic to be sent via another interface. [2] [3]

A VIP address can be used to provide nearly unlimited mobility. For example, if an application has an IP address on a physical subnet, that application can be moved only to a host on that same subnet. VIP addresses can be advertised on their own subnet, [a] so its application can be moved anywhere on the reachable network without changing addresses. [2]

A virtual IP address (VIP or VIPA) is an IP address that does not correspond to a physical network interface. Uses for VIPs include network address translation (especially, one-to-many NAT), fault-tolerance, and mobility.

Notes

  1. This typically accomplished using a full netmask, 32-bits for IPv4 and 128 bits for IPv6, such that the subnet and VIP address are the same and there is just the single VIP address in the subnet.

Related Research Articles

An Internet Protocol address is a numerical label such as 192.0.2.1 that is assigned to a device connected to a computer network that uses the Internet Protocol for communication. IP addresses serve two main functions: network interface identification, and location addressing.

<span class="mw-page-title-main">IPv4</span> Fourth version of the Internet Protocol

Internet Protocol version 4 (IPv4) is the first version of the Internet Protocol (IP) as a standalone specification. It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

Proxy ARP is a technique by which a proxy server on a given network answers the Address Resolution Protocol (ARP) queries for an IP address that is not on that network. The proxy is aware of the location of the traffic's destination and offers its own MAC address as the destination. The traffic directed to the proxy address is then typically routed by the proxy to the intended destination via another interface or via a tunnel.

<span class="mw-page-title-main">Network address translation</span> Technique for making connections between IP address spaces

Network address translation (NAT) is a method of mapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was initially used to bypass the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced but could not route the network's address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.

<span class="mw-page-title-main">VLAN</span> Network communications domain that is isolated at the data link layer

A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. Basically, a VLAN behaves like a virtual switch or network link that can share the same physical structure with other VLANs while staying logically separate from them. VLANs work by applying tags to network frames and handling these tags in networking systems, in effect creating the appearance and functionality of network traffic that, while on a single physical network, behaves as if it were split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

<span class="mw-page-title-main">Subnet</span> Logical subdivision of an IP network

A subnetwork, or subnet, is a logical subdivision of an IP network. The practice of dividing a network into two or more networks is called subnetting.

<span class="mw-page-title-main">Anycast</span> Network addressing and routing methodology

Anycast is a network addressing and routing methodology in which a single IP address is shared by devices in multiple locations. Routers direct packets addressed to this destination to the location nearest the sender, using their normal decision-making algorithms, typically the lowest number of BGP network hops. Anycast routing is widely used by content delivery networks such as web and name servers, to bring their content closer to end users.

<span class="mw-page-title-main">Supernetwork</span> Aggregation of Internet Protocol networks

A supernetwork, or supernet, is an Internet Protocol (IP) network that is formed by aggregation of multiple networks into a larger network. The new routing prefix for the aggregate network represents the constituent networks in a single routing table entry. The process of forming a supernet is called supernetting, prefix aggregation, route aggregation, or route summarization.

The Virtual Router Redundancy Protocol (VRRP) is a computer networking protocol that provides for automatic assignment of available Internet Protocol (IP) routers to participating hosts. This increases the availability and reliability of routing paths via automatic default gateway selections on an IP subnetwork.

anoNet is a decentralized friend-to-friend network built using VPNs and software BGP routers. anoNet works by making it difficult to learn the identities of others on the network allowing them to anonymously host IPv4 and IPv6 services. One of the primary goals of anoNet is to protect its participants' rights of speech and expression.

A UDP Helper Address is a special router configuration used to forward broadcast network traffic from a client machine on one subnet to a server in another subnet.

The IP network multipathing or IPMP is a facility provided by Solaris to provide fault-tolerance and load spreading for network interface cards (NICs). With IPMP, two or more NICs are dedicated for each network to which the host connects. Each interface can be assigned a static "test" IP address, which is used to assess the operational state of the interface. Each virtual IP address is assigned to an interface, though there may be more interfaces than virtual IP addresses, some of the interfaces being purely for standby purposes. When the failure of an interface is detected its virtual IP addresses are swapped to an operational interface in the group.

A routing protocol specifies how routers communicate with each other to distribute information that enables them to select paths between nodes on a computer network. Routers perform the traffic directing functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled connections and components and route data around obstructions is what gives the Internet its fault tolerance and high availability.

In network routing, the control plane is the part of the router architecture that is concerned with establishing the network topology, or the information in a routing table that defines what to do with incoming packets. Control plane functions, such as participating in routing protocols, run in the architectural control element. In most cases, the routing table contains a list of destination addresses and the outgoing interface(s) associated with each. Control plane logic also can identify certain packets to be discarded, as well as preferential treatment of certain packets for which a high quality of service is defined by such mechanisms as differentiated services.

A wildcard mask is a mask of bits that indicates which parts of an IP address are available for examination. In the Cisco IOS, they are used in several places, for example:

<span class="mw-page-title-main">IPv6 address</span> Label to identify a network interface of a computer or other network node

An Internet Protocol version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

IP routing is the application of routing methodologies to IP networks. This involves not only protocols and technologies but includes the policies of the worldwide organization and configuration of Internet infrastructure. In each IP network node, IP routing involves the determination of a suitable path for a network packet from a source to its destination in an IP network. The process uses static configuration rules or dynamically obtained from routing protocols to select specific packet forwarding methods to direct traffic to the next available intermediate network node one hop closer to the desired final destination, a total path potentially spanning multiple computer networks.

References

  1. "What is a VIP?". Juniper Networks . Retrieved 2017-10-14.
  2. 1 2 "Virtual IP Address Benefits". Novell . Retrieved 2017-10-14.
  3. "What is virtual IP address?". Webopedia. 11 August 2005. Retrieved 2017-10-14.