Virtual product development

Last updated

Virtual product development (VPD) is the practice of developing and prototyping products in a completely digital 2D/3D environment. [1] VPD has four main components:

VPD typically takes place in a collaborative, web-based environment that brings together designers, customers/consumers, and value chain partners around a single source of real-time product "truth". VPD enables practitioners to arrive at the right idea more quickly, and to accurately predict its performance in both manufacturing and retail settings, ultimately minimizing time to value, market failure potential, and product development costs.

Virtual process planning is a relatively new concept for manufacturing companies, although the concept has been in use for the construction industry for several years. BIM (building information modeling) is the system used by many construction, architectural and contracting firms. The detail and scheduling aspects are some of the more valuable aspects of the system. By utilizing virtual process planning, the entire production process can be designed to both maximize efficiency and avoid the trial and error method employed by most manufacturers. [2]

Various software exists with differing levels of information. The placement of work stations, inventory, personnel and equipment can be valuable for space planning. The interaction of the previously mentioned can also be investigated, allowing the user to identify potential issues from safety, quality and ergonomic standpoints.

VPD is a result of constant efforts in a direction to overcome the limitations of conventional testing procedures. VPD allows a designer to take important design decisions at early stages based on test results, giving control over cost. ‘Virtual product development’ is a strategy for coordinating technology, processes and people to enhance the established product development process. It is a gradual process that efficiently builds up a product virtually. Thus any changes to be made in its design can be reflected into its physical properties, supply chain, distribution channel and ultimately into the customer view; without physically manufacturing the product.

VPD encompasses a wide variety of software tools to cover a product from the conception to the final design and even manufacturing. This path consists of various processes to be carried out at manufacturing level, testing procedures and the final design which is modified automatically based on the test results. One of the major advantages of VPD is its computer brain capability, which can simulate various complex load conditions at a time. Non-linear load conditions are not always possible to create at the testing centre where the prototypes are being tested in conventional testing methods. These complex conditions, if accommodated during testing, can yield more reliable product form.

Notes

  1. "Virtual Product Development (VPD)". Best Performance Group. Retrieved 5 March 2018.
  2. "Industrial3D". Friday, 25 March 2022

Related Research Articles

Simulation Imitation of the operation of a real-world process or system over time

A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Often, computers are used to execute the simulation.

In business and engineering, new product development (NPD) covers the complete process of bringing a new product to market, renewing an existing product or introducing a product in a new market. A central aspect of NPD is product design, along with various business considerations. New product development is described broadly as the transformation of a market opportunity into a product available for sale. The products developed by an organisation provide the means for it to generate income. For many technology-intensive firms their approach is based on exploiting technological innovation in a rapidly changing market.

Computer-aided engineering

Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering analysis tasks. It includes finite element analysis (FEA), computational fluid dynamics (CFD), multibody dynamics (MBD), durability and optimization. It is included with computer-aided design (CAD) and computer-aided manufacturing (CAM) in the collective abbreviation "CAx".

Product lifecycle Duration of processing of products from inception, to engineering, design & manufacture

In industry, Product Lifecycle Management (PLM) is the process of managing the entire lifecycle of a product from its inception through the engineering, design and manufacture, as well as the service and disposal of manufactured products. PLM integrates people, data, processes and business systems and provides a product information backbone for companies and their extended enterprises.

Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development and is comparable to prototyping as known from other fields, such as mechanical engineering or manufacturing.

Online shopping Form of electronic commerce

Online shopping is a form of electronic commerce which allows consumers to directly buy goods or services from a seller over the Internet using a web browser or a mobile app. Consumers find a product of interest by visiting the website of the retailer directly or by searching among alternative vendors using a shopping search engine, which displays the same product's availability and pricing at different e-retailers. As of 2020, customers can shop online using a range of different computers and devices, including desktop computers, laptops, tablet computers and smartphones.

A design engineer is an engineer focused on the engineering design process in any of the various engineering disciplines and design disciplines like Human-Computer Interaction. Design engineers tend to work on products and systems that involve adapting and using complex scientific and mathematical techniques. The emphasis tends to be on utilizing engineering physics and other applied sciences to develop solutions for society.

Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

The process of circuit design can cover systems ranging from complex electronic systems all the way down to the individual transistors within an integrated circuit. For simple circuits the design process can often be done by one person without needing a planned or structured design process, but for more complex designs, teams of designers following a systematic approach with intelligently guided computer simulation are becoming increasingly common. In integrated circuit design automation, the term "circuit design" often refers to the step of the design cycle which outputs the schematics of the integrated circuit. Typically this is the step between logic design and physical design.

Mockup Scale or full-size model of a design or device

In manufacturing and design, a mockup, or mock-up, is a scale or full-size model of a design or device, used for teaching, demonstration, design evaluation, promotion, and other purposes. A mockup may be a prototype if it provides at least part of the functionality of a system and enables testing of a design. Mock-ups are used by designers mainly to acquire feedback from users. Mock-ups address the idea captured in a popular engineering one-liner: "You can fix it now on the drafting board with an eraser or you can fix it later on the construction site with a sledge hammer".

Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mock up of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome.

Post-silicon validation and debug is the last step in the development of a semiconductor integrated circuit.

Digital Prototyping gives conceptual design, engineering, manufacturing, and sales and marketing departments the ability to virtually explore a complete product before it's built. Industrial designers, manufacturers, and engineers use Digital Prototyping to design, iterate, optimize, validate, and visualize their products digitally throughout the product development process. Innovative digital prototypes can be created via CAutoD through intelligent and near-optimal iterations, meeting multiple design objectives, identifying multiple figures of merit, and reducing development gearing and time-to-market. Marketers also use Digital Prototyping to create photorealistic renderings and animations of products prior to manufacturing. Companies often adopt Digital Prototyping with the goal of improving communication between product development stakeholders, getting products to market faster, and facilitating product innovation.

Process development execution systems (PDES) are software systems used to guide the development of high-tech manufacturing technologies like semiconductor manufacturing, MEMS manufacturing, photovoltaics manufacturing, biomedical devices or nanoparticle manufacturing. Software systems of this kind have similarities to product lifecycle management (PLM) systems. They guide the development of new or improved technologies from its conception, through development and into manufacturing. Furthermore they borrow on concepts of manufacturing execution systems (MES) systems but tailor them for R&D rather than for production. PDES integrate people, data, information, knowledge and business processes.

Virtual prototyping is a method in the process of product development. It involves using computer-aided design (CAD), computer-automated design (CAutoD) and computer-aided engineering (CAE) software to validate a design before committing to making a physical prototype. This is done by creating computer generated geometrical shapes (parts) and either combining them into an "assembly" and testing different mechanical motions, fit and function. The assembly or individual parts could be opened in CAE software to simulate the behavior of the product in the real world.

NEi Fusion

NEi Fusion is a finite element analysis program sold by NEi Software that is used by engineers to build and analyze 3D models of parts and assemblies of various products. NEi Fusion digital-simulation software virtually applies forces, pressures, vibration, acceleration loads, or thermal conditions to 3D models of parts, structures, and assemblies. It obtains results of various engineering parameters, such as deformation, stresses, strains, temperature distributions, and modal shapes the design would experience if implemented. The results, which range from tables of data to contour plots and animations, provide engineering insight. For example, result visualizations like color-coded, contour plots can help deepen understanding of physical phenomena in complex geometry. NEi Fusion consists of a 3D parametric CAD modeler powered by SolidWorks with NEi Nastran finite element analysis solvers. NEi Fusion runs on Microsoft Windows and provides CAD modeling, import and meshing tools.

Simulation modeling is the process of creating and analyzing a digital prototype of a physical model to predict its performance in the real world. Simulation modeling is used to help designers and engineers understand whether, under what conditions, and in which ways a part could fail and what loads it can withstand. Simulation modeling can also help to predict fluid flow and heat transfer patterns. It analyses the approximate working conditions by applying the simulation software.

ESI Group

ESI Group provides virtual prototyping software that simulates a product's behavior during testing, manufacturing and real-life use. Engineers in a variety of industries use its software to evaluate the performance of proposed designs in the early phases of the project with the goal of identifying and eliminating potential design flaws.

Digital manufacturing is an integrated approach to manufacturing that is centered around a computer system. The transition to digital manufacturing has become more popular with the rise in the quantity and quality of computer systems in manufacturing plants. As more automated tools have become used in manufacturing plants it has become necessary to model, simulate, and analyze all of the machines, tooling, and input materials in order to optimize the manufacturing process. Overall, digital manufacturing can be seen sharing the same goals as computer-integrated manufacturing (CIM), flexible manufacturing, lean manufacturing, and design for manufacturability (DFM). The main difference is that digital manufacturing was evolved for use in the computerized world.

Predictive engineering analytics (PEA) is a development approach for the manufacturing industry that helps with the design of complex products. It concerns the introduction of new software tools, the integration between those, and a refinement of simulation and testing processes to improve collaboration between analysis teams that handle different applications. This is combined with intelligent reporting and data analytics. The objective is to let simulation drive the design, to predict product behavior rather than to react on issues which may arise, and to install a process that lets design continue after product delivery.

References