WACA clustering algorithm

Last updated

WACA is a clustering algorithm for dynamic networks. [1] [2] WACA (Weighted Application-aware Clustering Algorithm) uses a heuristic weight function for self-organized cluster creation. The election of clusterheads is based on local network information only.

Related Research Articles

<span class="mw-page-title-main">Artificial neural network</span> Computational model used in machine learning, based on connected, hierarchical functions

Artificial neural networks are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains.

A recommender system, or a recommendation system, is a subclass of information filtering system that provide suggestions for items that are most pertinent to a particular user. Typically, the suggestions refer to various decision-making processes, such as what product to purchase, what music to listen to, or what online news to read. Recommender systems are particularly useful when an individual needs to choose an item from a potentially overwhelming number of items that a service may offer.

Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems.

Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind.

<i>k</i>-means clustering Vector quantization algorithm minimizing the sum of squared deviations

k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances, but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians and k-medoids.

In computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations.

<span class="mw-page-title-main">Non-negative matrix factorization</span> Algorithms for matrix decomposition

Non-negative matrix factorization, also non-negative matrix approximation is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered. Since the problem is not exactly solvable in general, it is commonly approximated numerically.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

<span class="mw-page-title-main">Weighted network</span> Network where the ties among nodes have weights assigned to them

A weighted network is a network where the ties among nodes have weights assigned to them. A network is a system whose elements are somehow connected. The elements of a system are represented as nodes and the connections among interacting elements are known as ties, edges, arcs, or links. The nodes might be neurons, individuals, groups, organisations, airports, or even countries, whereas ties can take the form of friendship, communication, collaboration, alliance, flow, or trade, to name a few.

The clique percolation method is a popular approach for analyzing the overlapping community structure of networks. The term network community has no widely accepted unique definition and it is usually defined as a group of nodes that are more densely connected to each other than to other nodes in the network. There are numerous alternative methods for detecting communities in networks, for example, the Girvan–Newman algorithm, hierarchical clustering and modularity maximization.

The Brooks–Iyengar algorithm or FuseCPA Algorithm or Brooks–Iyengar hybrid algorithm is a distributed algorithm that improves both the precision and accuracy of the interval measurements taken by a distributed sensor network, even in the presence of faulty sensors. The sensor network does this by exchanging the measured value and accuracy value at every node with every other node, and computes the accuracy range and a measured value for the whole network from all of the values collected. Even if some of the data from some of the sensors is faulty, the sensor network will not malfunction. The algorithm is fault-tolerant and distributed. It could also be used as a sensor fusion method. The precision and accuracy bound of this algorithm have been proved in 2016.

Software-defined networking (SDN) technology is an approach to network management that enables dynamic, programmatically efficient network configuration in order to improve network performance and monitoring, in a manner more akin to cloud computing than to traditional network management. SDN is meant to address the static architecture of traditional networks and may be employed to centralize network intelligence in one network component by disassociating the forwarding process of network packets from the routing process. The control plane consists of one or more controllers, which are considered the brain of the SDN network, where the whole intelligence is incorporated. However, centralization has certain drawbacks related to security, scalability and elasticity.

<span class="mw-page-title-main">Emotion recognition</span> Process of visually interpreting emotions

Emotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.

Time Slotted Channel Hopping or Time Synchronized Channel Hopping (TSCH) is a channel access method for shared-medium networks.

<span class="mw-page-title-main">KHOPCA clustering algorithm</span>

KHOPCA is an adaptive clustering algorithm originally developed for dynamic networks. KHOPCA provides a fully distributed and localized approach to group elements such as nodes in a network according to their distance from each other. KHOPCA operates proactively through a simple set of rules that defines clusters, which are optimal with respect to the applied distance function.

<span class="mw-page-title-main">Apache SINGA</span> Open-source machine learning library

Apache SINGA is an Apache top-level project for developing an open source machine learning library. It provides a flexible architecture for scalable distributed training, is extensible to run over a wide range of hardware, and has a focus on health-care applications.

<span class="mw-page-title-main">Transition (computer science)</span>

Transition refers to a computer science paradigm in the context of communication systems which describes the change of communication mechanisms, i.e., functions of a communication system, in particular, service and protocol components. In a transition, communication mechanisms within a system are replaced by functionally comparable mechanisms with the aim to ensure the highest possible quality, e.g., as captured by the quality of service.

<span class="mw-page-title-main">Moustafa Youssef</span> Egyptian computer scientist

Moustafa Youssef is an Egyptian computer scientist who was named Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2019 for contributions to wireless location tracking technologies and a Fellow of the Association for Computing Machinery (ACM) in 2019 for contributions to location tracking algorithms. He is the first and only ACM Fellow in the Middle East and Africa.

References

  1. Brust, M. R.; Andronache, A.; Rothkugel, S. (2007-03-01). "WACA: A Hierarchical Weighted Clustering Algorithm Optimized for Mobile Hybrid Networks". 2007 Third International Conference on Wireless and Mobile Communications (ICWMC'07). p. 23. arXiv: 0706.1080 . Bibcode:2007arXiv0706.1080B. doi:10.1109/ICWMC.2007.93. ISBN   978-0-7695-2796-3. S2CID   14065340.
  2. Andronache, Adrian; Brust, Matthias R.; Rothkugel, Steffen (2006-01-01). "Multimedia content distribution in hybrid wireless networks using weighted clustering". Proceedings of the 2nd ACM international workshop on Wireless multimedia networking and performance modeling. WMuNeP '06. New York, NY, USA: ACM. pp. 1–10. arXiv: 0706.1141 . doi:10.1145/1163698.1163700. ISBN   978-1595934857. S2CID   3264865.