Wave Dragon

Last updated

Wave Dragon is a floating slack-moored energy converter of the overtopping type, developed by the Danish company Wave Dragon Aps. Wave Dragon is a joint EU research project, including partners from Austria, Denmark, Germany, Ireland, Portugal, Sweden, and the UK. [1] It was the world's first offshore wave energy converter.

Contents

History

The 237 ton prototype Wave Dragon was towed in March 2003 to the first test site at the Danish Wave Energy Test Center in Nissum Bredning fjord. It was tested until January 2005. In 2006 a modified prototype was deployed to another test site with more energetic wave climate. The prototype was scrapped in 2011.

Technology

Wave Dragon seen from reflector, prototype 1:4 1/2 WaveDragon.JPG
Wave Dragon seen from reflector, prototype 1:4½

Wave Dragon is a floating, slack-moored energy converter of the 'overtopping' type which can be deployed as a single unit, or in arrays of up to 200 units; the output of such an array would have a capacity comparable to traditional fossil-fuel power plants.

The first prototype was connected to the power grid in 2003 and is currently deployed in Nissum Bredning, Denmark. Long term testing is under way to determine system performance; i.e. availability and power production under different weather and tide conditions. A multi-MW deployment is expected in 2009.

The Wave Dragon concept combines existing, mature offshore and hydro turbine technology. In the Wave Dragon, the Kaplan turbine is being tested at the Technical University of Munich. This turbine uses a siphon inlet whereas the next 6 turbines to be installed will be equipped with a cylinder gate to start and stop water inlet to the turbine. [2]

Principles

Construction

Over topping principle of Wave Dragon WD side princip.JPG
Over topping principle of Wave Dragon

Wave Dragon uses principles from traditional hydropower plants in an offshore floating platform to use wave energy.

The Wave Dragon consists of two wave reflectors that direct the waves towards a ramp. Behind the ramp, a large reservoir collects the directed water, and temporarily stores the water. The reservoir is held above sea level. The water leaves the reservoir through hydro turbines. [3]

Three-step energy conversion:

Overtopping (absorption) -> Storage (reservoir) -> Power-take-off (low-head turbines)

Main components of a Wave Dragon: [3]

Design

Wave energy converters make use of the mechanical motion or fluid pressure. Wave Dragon does not have any conversion, e.g. oscillating water/air columns, hinged rafts, and gyroscopic/hydraulic devices. The Wave Dragon directly utilises the energy of the water's motion.

The Wave Dragon is of heavy, durable construction and has only one kind of moving parts: the turbines. This is essential for any device bound for operations offshore, where extreme conditions and fouling, etc., seriously affect any moving parts.

Wave Dragon model testing has been used in order to:

Main body

The main body to or platform consists of one large floating reservoir. To reduce rolling and keep the platform stable, the Wave Dragon must be large and heavy. The prototype used in Nissum is of a traditional (ship-like) plate construction of plates of 8 mm steel. [3] The total steel weight of the main body plus the ramp is 150 tons, so that 87 tons of water must be added to achieve the 237 tons total weight needed for stable continuous operation. [3]

See also

Related Research Articles

Wave power Transport of energy by wind waves, and the capture of that energy to do useful work

Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, water desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).

Tension-leg platform Type of offshore platform used in production of oil or gas

A tension-leg platform (TLP) or extended tension leg platform (ETLP) is a vertically moored floating structure normally used for the offshore production of oil or gas, and is particularly suited for water depths greater than 300 metres and less than 1500 metres. Use of tension-leg platforms has also been proposed for offshore wind turbines.

Vestas Danish wind turbine company

Vestas Wind Systems A/S is a Danish manufacturer, seller, installer, and servicer of wind turbines that was founded in 1945. The company operates manufacturing plants in Denmark, Germany, the Netherlands, Taiwan, India, Italy, Romania, the United Kingdom, Spain, Sweden, Norway, Australia, China, Brazil, Poland and the United States, and employs more than 25,000 people globally.

Marine currents can carry large amounts of water, largely driven by the tides, which are a consequence of the gravitational effects of the planetary motion of the Earth, the Moon and the Sun. Augmented flow velocities can be found where the underwater topography in straits between islands and the mainland or in shallows around headlands plays a major role in enhancing the flow velocities, resulting in appreciable kinetic energy. The sun acts as the primary driving force, causing winds and temperature differences. Because there are only small fluctuations in current speed and stream location with minimal changes in direction, ocean currents may be suitable locations for deploying energy extraction devices such as turbines. Other effects such as regional differences in temperature and salinity and the Coriolis effect due to the rotation of the earth are also major influences. The kinetic energy of marine currents can be converted in much the same way that a wind turbine extracts energy from the wind, using various types of open-flow rotors.

Run-of-the-river hydroelectricity Hydroelectric power station

Run-of-river hydroelectricity (ROR) or run-of-the-river hydroelectricity is a type of hydroelectric generation plant whereby little or no water storage is provided. Run-of-the-river power plants may have no water storage at all or a limited amount of storage, in which case the storage reservoir is referred to as pondage. A plant without pondage is subject to seasonal river flows, thus the plant will operate as an intermittent energy source. Conventional hydro uses reservoirs, which regulate water for flood control, dispatchable electrical power, and the provision of fresh water for agriculture.

Subsea is fully submerged ocean equipment, operations or applications, especially when some distance offshore, in deep ocean waters, or on the seabed. The term is frequently used in connection with oceanography, marine or ocean engineering, ocean exploration, remotely operated vehicle (ROVs) autonomous underwater vehicles (AUVs), submarine communications or power cables, seafloor mineral mining, oil and gas, and offshore wind power.

The Wave Hub is a floating offshore wind and wave power research project. The project is developed approximately 10 miles (16 km) off Hayle, on the north coast of Cornwall, United Kingdom. The hub was installed on the seabed in September 2010, and is a 'socket' sitting on the seabed for wave energy converters to be plugged into. It will have connections to it from arrays of up to four kinds of wave energy converter. A cable from the hub to main land will take electrical power from the devices to the electric grid. The total capacity of the hub will be 20 MWe. The estimated cost of the project is £28 million.

Oceanlinx was a company established in 1997 which specialised in the research and development of ocean-based renewable energy technology. The company's central technology was based on the Wave Energy Converter "WEC" which converts wave energy into electrical energy. Oceanlinx technology focused on the oscillating water column principle, and developed several prototype generators which were deployed and tested in Port Kembla, New South Wales. In 2014, Oceanlinx entered receivership and its technology, intellectual property, brand and trademark were sold to Wave Power Renewables Limited in Hong Kong. Wave Power Renewables Limited has continued to develop the technology, and Oceanlinx's founding director, Tom Denniss has further developed the technology since 2016 as a director of Wave Swell Energy.

The European Marine Energy Centre (EMEC) Ltd is a UKAS accredited test and research centre focusing on wave and tidal power development based in the Orkney Islands, UK. The Centre provides developers with the opportunity to test full-scale grid-connected prototype devices in unrivalled wave and tidal conditions.

Floating wind turbine Type of wind turbine

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Japan, France and US West coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

Offshore wind power Wind turbines in marine locations for electricity production

Offshore wind power or offshore wind energy is the generation of electricity through wind farms in bodies of water, usually at sea. There are higher wind speeds offshore than on land, so offshore farms generate more electricity per amount of capacity installed. Offshore wind farms are also less controversial than those on land, as they have less impact on people and the landscape.

The Oyster is a hydro-electric wave energy device that uses the motion of ocean waves to generate electricity. It is made up of a Power Connector Frame (PCF), which is bolted to the seabed, and a Power Capture Unit (PCU). The PCU is a hinged buoyant flap that moves back and forth with movement of the waves. The movement of the flap drives two hydraulic pistons that feed high-pressured water to an onshore hydro-electric turbine, which drives a generator to make electricity. Oyster was stationed at the European Marine Energy Centre (EMEC) at its Billia Croo site in Orkney, Scotland until the company ceased trading in 2015.

Marine energy Energy stored in the waters of oceans

Marine energy or marine power refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion. Some of this energy can be harnessed to generate electricity to power homes, transport and industries.

Tidal stream generator Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from run of river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines, and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

Vestas V164 Three-bladed offshore wind turbine

The Vestas V164 is a three-bladed offshore wind turbine, produced by Vestas, with a nameplate capacity of up to 10 megawatts, a world record. Vestas revealed the V164's design in 2011 with the first prototype unit operated at Østerild in northern Denmark in January 2014. The first industrial units were installed in 2016 at Burbo Bank, off the west coast of the United Kingdom. By 2021, Vestas had produced 500 of the series.

The DeepCwind Consortium is a national consortium of universities, nonprofits, utilities, and industry leaders. The mission of the consortium is to establish the State of Maine as a national leader in floating offshore wind technology. Much of the consortium's work and resulting research has been funded by the U.S. Department of Energy, the National Science Foundations, and others.

VolturnUS

The VolturnUS is a floating concrete structure that supports a wind turbine, designed by University of Maine Advanced Structures and Composites Center and deployed by DeepCwind Consortium in 2013. The VolturnUS can support wind turbines in water depths of 150 ft (46 m) or more. The DeepCwind Consortium and its partners deployed a 1/8th scale VolturnUS in 2013. Efforts are now underway by Maine Aqua Ventus 1, GP, LLC, to deploy to full-scale VolturnUS structures off the coast of Monhegan Island, Maine, in the UMaine Deepwater Offshore Wind Test Site. This demonstration project, known as New England Aqua Ventus I, is planned to deploy two 6 MW wind turbines by 2020.

MARMOK-A-5

MARMOK-A-5 is an offshore electrical power generator that uses wave energy to create electricity. This device is a spar buoy installed in the maritime testing site Bimep, in the Bay of Biscay. It is the first grid-connected maritime generator in Spain, and one of the first in the world.

Offshore embedded anchors Type of marine mooring component

Offshore embedded anchors are anchors that derive their holding capacity from the frictional, or bearing, resistance of the surrounding soil, as opposed to gravity anchors, which derive their holding capacity largely from their weight. As offshore developments move into deeper waters, gravity-based structures become less economical due to the large size needed and the consequent cost of transportation.

References

  1. "Europe at the forefront in research on solar, wave and geothermal energies. Press release IP/04/350". European Commission. 2004-03-16. Retrieved 2008-05-31.
  2. Keulenaer, H. http://www.leonardo-energy.org/wave-dragon, 2007-04-13. Retrieved on 2013-01-23:
  3. 1 2 3 4 Wave Dragon Wave Dragon Homepage, Retrieved on 2008-04-10: