Weighted catenary

Last updated
The Gateway Arch is a weighted catenary: thick at the bottom, thin at the top. St Louis night expblend cropped.jpg
The Gateway Arch is a weighted catenary: thick at the bottom, thin at the top.

A weighted catenary (also flattened catenary, was defined by William Rankine as transformed catenary [1] and thus sometimes called Rankine curve [2] ) is a catenary curve, but of a special form: if a catenary is the curve formed by a chain under its own weight, a weighted catenary is the curve formed if the chain's weight is not consistent along its length. Formally, a "regular" catenary has the equation

Contents

for a given value of a. A weighted catenary has the equation

and now two constants enter: a and b.

Significance

A hanging chain is a regular catenary -- and is not weighted. Kette Kettenkurve Catenary 2008 PD.JPG
A hanging chain is a regular catenary and is not weighted.

A catenary arch has a uniform thickness. However, if

  1. the arch is not of uniform thickness, [3]
  2. the arch supports more than its own weight, [4]
  3. or if gravity varies, [5]

it becomes more complex. A weighted catenary is needed.

The aspect ratio of a weighted catenary (or other curve) describes a rectangular frame containing the selected fragment of the curve theoretically continuing to the infinity. [6] [7]

Examples

The Gateway Arch in the American city of St. Louis (Missouri) is the most famous example of a weighted catenary.[ citation needed ]

Simple suspension bridges use weighted catenaries. [7]

Related Research Articles

<span class="mw-page-title-main">Catenary</span> Curve formed by a hanging chain

In physics and geometry, a catenary is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field.

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Hyperboloid</span> Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic function of a single variable is a function of the form

<span class="mw-page-title-main">Catenoid</span> Surface of revolution of a catenary

In geometry, a catenoid is a type of surface, arising by rotating a catenary curve about an axis. It is a minimal surface, meaning that it occupies the least area when bounded by a closed space. It was formally described in 1744 by the mathematician Leonhard Euler.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Involute</span> Curve traced by a string as it is unwrapped from another curve

In mathematics, an involute is a particular type of curve that is dependent on another shape or curve. An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve.

<span class="mw-page-title-main">Tractrix</span> Curve traced by a point on a rod as one end is dragged along a line

In geometry, a tractrix is the curve along which an object moves, under the influence of friction, when pulled on a horizontal plane by a line segment attached to a pulling point that moves at a right angle to the initial line between the object and the puller at an infinitesimal speed. It is therefore a curve of pursuit. It was first introduced by Claude Perrault in 1670, and later studied by Isaac Newton (1676) and Christiaan Huygens (1693).

<span class="mw-page-title-main">Evolute</span> Centers of curvature of a curve

In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve. The evolute of a circle is therefore a single point at its center. Equivalently, an evolute is the envelope of the normals to a curve.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

<span class="mw-page-title-main">Semicubical parabola</span> Algebraic plane curve of the form y² – a²x³ = 0

In mathematics, a cuspidal cubic or semicubical parabola is an algebraic plane curve that has an implicit equation of the form

<span class="mw-page-title-main">Elliptic coordinate system</span> 2D coordinate system whose coordinate lines are confocal ellipses and hyperbolae

In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.

<span class="mw-page-title-main">Bipolar cylindrical coordinates</span>

Bipolar cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional bipolar coordinate system in the perpendicular -direction. The two lines of foci and of the projected Apollonian circles are generally taken to be defined by and , respectively, in the Cartesian coordinate system.

The Beltrami identity, named after Eugenio Beltrami, is a special case of the Euler–Lagrange equation in the calculus of variations.

<span class="mw-page-title-main">Parabolic arch</span> Type of arch shape

A parabolic arch is an arch in the shape of a parabola. In structures, their curve represents an efficient method of load, and so can be found in bridges and in architecture in a variety of forms.

<span class="mw-page-title-main">Catenary arch</span> Architectural pointed arch that follows an inverted catenary curve

A catenary arch is a type of architectural arch that follows an inverted catenary curve. The catenary curve has been employed in buildings since ancient times. It forms an underlying principle to the overall system of vaults and buttresses in stone vaulted Gothic cathedrals and in Renaissance domes. It is not a parabolic arch.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

References

  1. Osserman, Robert (February 2010). "Mathematics of the Gateway Arch" (PDF). Notices of the American Mathematical Society . 57 (2): 220–229. ISSN   0002-9920.
  2. Andrue, Mario (2020). "The arches of the facade of the Palau Güell. Hyphotesis about its conformation" (PDF). fundacionantoniogaudi.org. Antonio Gaudi Foundation. Retrieved 5 January 2024.
  3. Robert Osserman (February 2010). "Mathematics of the Gateway Arch" (PDF). Notices of the AMS.
  4. Re-review: Catenary and Parabola: Re-review: Catenary and Parabola, accessdate: April 13, 2017
  5. MathOverflow: classical mechanics - Catenary curve under non-uniform gravitational field - MathOverflow, accessdate: April 13, 2017
  6. Definition from WhatIs.com: What is aspect ratio? - Definition from WhatIs.com, accessdate: April 13, 2017
  7. 1 2 Robert Osserman (2010). "How the Gateway Arch Got its Shape" (PDF). Nexus Network Journal. Retrieved 13 April 2017.

On the Gateway arch

Commons