West Caroline Basin

Last updated

The West Caroline Basin is an oceanic basin in the south-west Pacific Ocean north of New Guinea.

Contents

Bathymetry and oceanography

The West Caroline Basin is bordered by the islands and banks of Melanesia to the north and west, including the Caroline and Palau islands, and to the east the Eauripik Rise separates it from the East Caroline Basin. Its depth lies between 4,000–5,000 m (13,000–16,000 ft). [1] The Eauripik Rise reaches a depth of 2,000–3,000 m (6,600–9,800 ft) and allows Pacific deep (2000 m and deeper) and intermediate (1000-2000 m) waters to enter the basin. [2]

The West Caroline Basin is separated from the West Mariana Basin by the Caroline Seamounts. These two basins are connected by the Mariana and Yap trenches separated by a sill c.5,000 m (16,000 ft) deep. Water above this depth can reach the West Caroline Basin without perturbations and temperature and salinity profiles for the two basins are similar. [3] This trench, the only conduit for bottom waters in the West Caroline Basin, ventilates the basin. [2]

The North Equatorial Current flows westward across the West Caroline Basin between 25°N and 5°N around 170-180°E in February but lies below 10°N in August. As it reaches the Philippine continental shelf it splits into two currents, the southern branch of which joins the east-bound Equatorial Counter Current. [1]

Tectonic evolution

The West and East Caroline basins have similar but distinct histories. Sea-floor spreading started c. 36 Ma along mostly East–North-East-directed axes, except in the eastern West Caroline Basin where anomalies are oriented more East-West. Spreading continued at a relatively constant spreading half-rate of 6.5–6.0 cm/year (2.6–2.4 in/year) until c. 31 Ma when spreading either ceased or slowed considerably in the western parts of both basins but continued in the eastern parts. This regime ended c. 27 Ma in the eastern West Caroline Basin and c. 28 Ma in the eastern East Caroline Basin. In the West Caroline Basin a period of intermediate spreading rates which continued until 14.5 Ma is still visible as a sharp north-south decline in sediment thickness in the southern parts of the basin. The final stage of sea-floor spreading spanned at least the period 12.5–14.5 Ma. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Challenger Deep</span> Deepest-known point of Earths seabed

The Challenger Deep is the deepest known point of the seabed of Earth, located in the western Pacific Ocean at the southern end of the Mariana Trench, in the ocean territory of the Federated States of Micronesia. According to the GEBCO Gazetteer of Undersea Feature Names the depression's depth is 10,920 ± 10 m (35,827 ± 33 ft) at 11°22.4′N142°35.5′E, although its exact geodetic location remains inconclusive and its depth has been measured at 10,902–10,929 m (35,768–35,856 ft) by deep-diving submersibles, remotely operated underwater vehicles and benthic landers, and (sometimes) slightly more by sonar bathymetry. The differences in depth estimates and their geodetic positions are scientifically explainable by the difficulty of researching such deep locations.

<span class="mw-page-title-main">Panthalassa</span> Prehistoric superocean that surrounded Pangaea

Panthalassa, also known as the Panthalassic Ocean or Panthalassan Ocean, was the superocean that surrounded the supercontinent Pangaea, the latest in a series of supercontinents in the history of Earth. During the Paleozoic–Mesozoic transition c. 250 Ma it occupied almost 70% of Earth's surface. Its ocean floor has completely disappeared because of the continuous subduction along the continental margins on its circumference. Panthalassa is also referred to as the Paleo-Pacific or Proto-Pacific because the Pacific Ocean is a direct continuation of Panthalassa.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Cayman Trough</span> Complex transform fault zone pull-apart basin on the floor of the western Caribbean Sea

The Cayman Trough is a complex transform fault zone pull-apart basin which contains a small spreading ridge, the Mid-Cayman Rise, on the floor of the western Caribbean Sea between Jamaica and the Cayman Islands. It is the deepest point in the Caribbean Sea and forms part of the tectonic boundary between the North American Plate and the Caribbean Plate. It extends from the Windward Passage, going south of the Sierra Maestra of Cuba toward Guatemala. The transform fault continues onshore as the Polochic-Motagua fault system, which consists of the Polochic and Motagua faults. This system continues on until the Chiapas massif where it is part of the diffuse triple junction of the North American, Caribbean and Cocos plates.

In hydrology, an oceanic basin (or ocean basin) is anywhere on Earth that is covered by seawater. Geologically, most of the ocean basins are large geologic basins that are below sea level.

<span class="mw-page-title-main">Alvinocarididae</span> Family of crustaceans

Alvinocarididae is a family of shrimp, originally described by M. L. Christoffersen in 1986 from samples collected by DSV Alvin, from which they derive their name. Shrimp of the family Alvinocarididae generally inhabit deep sea hydrothermal vent regions, and hydrocarbon cold seep environments. Carotenoid pigment has been found in their bodies. The family Alvinocarididae comprises 7 extant genera.

<span class="mw-page-title-main">Kermadec Trench</span> Linear ocean trench in the South Pacific

The Kermadec Trench is a linear ocean trench in the south Pacific Ocean. It stretches about 1,000 km (620 mi) from the Louisville Seamount Chain in the north (26°S) to the Hikurangi Plateau in the south (37°S), north-east of New Zealand's North Island. Together with the Tonga Trench to the north, it forms the 2,000 km (1,200 mi)-long, near-linear Kermadec-Tonga subduction system, which began to evolve in the Eocene when the Pacific Plate started to subduct beneath the Australian Plate. Convergence rates along this subduction system are among the fastest on Earth, 80 mm (3.1 in)/yr in the north and 45 mm (1.8 in)/yr in the south.

<span class="mw-page-title-main">Back-arc basin</span> Submarine features associated with island arcs and subduction zones

A back-arc basin is a type of geologic basin, found at some convergent plate boundaries. Presently all back-arc basins are submarine features associated with island arcs and subduction zones, with many found in the western Pacific Ocean. Most of them result from tensional forces, caused by a process known as oceanic trench rollback, where a subduction zone moves towards the subducting plate. Back-arc basins were initially an unexpected phenomenon in plate tectonics, as convergent boundaries were expected to universally be zones of compression. However, in 1970, Dan Karig published a model of back-arc basins consistent with plate tectonics.

<span class="mw-page-title-main">Izu–Bonin–Mariana Arc</span> Convergent boundary in Micronesia

The Izu–Bonin–Mariana (IBM) arc system is a tectonic plate convergent boundary in Micronesia. The IBM arc system extends over 2800 km south from Tokyo, Japan, to beyond Guam, and includes the Izu Islands, the Bonin Islands, and the Mariana Islands; much more of the IBM arc system is submerged below sealevel. The IBM arc system lies along the eastern margin of the Philippine Sea Plate in the Western Pacific Ocean. It is the site of the deepest gash in Earth's solid surface, the Challenger Deep in the Mariana Trench.

<span class="mw-page-title-main">Geology of the Iberian Peninsula</span> Origins, structure, use and study of the rock formations of Spain, Portugal, Andorra and Gibraltar

The geology of the Iberian Peninsula consists of the study of the rock formations on the Iberian Peninsula, which includes Spain, Portugal, Andorra, and Gibraltar. The peninsula contains rocks from every geological period from the Ediacaran to the Quaternary, and many types of rock are represented. World-class mineral deposits are also found there.

<span class="mw-page-title-main">Mariana Trough</span>

The Mariana Trough is an active back-arc basin in the western Pacific Ocean. It is an integral part of the Izu–Bonin–Mariana Arc system.

<span class="mw-page-title-main">Siliceous ooze</span> Biogenic pelagic sediment located on the deep ocean floor

Siliceous ooze is a type of biogenic pelagic sediment located on the deep ocean floor. Siliceous oozes are the least common of the deep sea sediments, and make up approximately 15% of the ocean floor. Oozes are defined as sediments which contain at least 30% skeletal remains of pelagic microorganisms. Siliceous oozes are largely composed of the silica based skeletons of microscopic marine organisms such as diatoms and radiolarians. Other components of siliceous oozes near continental margins may include terrestrially derived silica particles and sponge spicules. Siliceous oozes are composed of skeletons made from opal silica SiO2·nH2O, as opposed to calcareous oozes, which are made from skeletons of calcium carbonate (CaCO3·nH2O) organisms (i.e. coccolithophores). Silica (Si) is a bioessential element and is efficiently recycled in the marine environment through the silica cycle. Distance from land masses, water depth and ocean fertility are all factors that affect the opal silica content in seawater and the presence of siliceous oozes.

<span class="mw-page-title-main">Caroline Plate</span> Minor oceanic tectonic plate north of New Guinea

The Caroline Plate is a minor tectonic plate that straddles the Equator in the eastern hemisphere located north of New Guinea. It forms a subduction zone along the border with the Bird's Head Plate and other minor plates of the New Guinea region to the south. A transform boundary forms the northern border with the Pacific Plate. Along the border with the Philippine Sea Plate is a convergent boundary that transitions into a rift.

<span class="mw-page-title-main">Mariana Plate</span> Small tectonic plate west of the Mariana Trench

The Mariana Plate is a micro tectonic plate located west of the Mariana Trench which forms the basement of the Mariana Islands which form part of the Izu–Bonin–Mariana Arc. It is separated from the Philippine Sea Plate to the west by a divergent boundary with numerous transform fault offsets. The boundary between the Mariana and the Pacific Plate to the east is a subduction zone with the Pacific Plate subducting beneath the Mariana. This eastern subduction is divided into the Mariana Trench, which forms the southeastern boundary, and the Izu–Ogasawara Trench the northeastern boundary. The subduction plate motion is responsible for the shape of the Mariana plate and back arc.

<span class="mw-page-title-main">East Antarctic Shield</span> Cratonic rock body which makes up most of the continent Antarctica

The East Antarctic Shield or Craton is a cratonic rock body that covers 10.2 million square kilometers or roughly 73% of the continent of Antarctica. The shield is almost entirely buried by the East Antarctic Ice Sheet that has an average thickness of 2200 meters but reaches up to 4700 meters in some locations. East Antarctica is separated from West Antarctica by the 100–300 kilometer wide Transantarctic Mountains, which span nearly 3,500 kilometers from the Weddell Sea to the Ross Sea. The East Antarctic Shield is then divided into an extensive central craton that occupies most of the continental interior and various other marginal cratons that are exposed along the coast.

<span class="mw-page-title-main">Adare Basin</span>

The Adare Basin is a geologic structural basin located north-east of Cape Adare of Antarctica, for which its named, and north of the western Ross Sea. The Adare Basin is an extensional rift basin located along a seafloor spreading center that forms the failed arm of the Tertiary spreading ridge separating East and West Antarctica, known as the West Antarctic Rift System and similar in structure to the East Africa Rift System. Centrally located in the Adare Basin is the Adare Trough. The extension of this rift system is recorded in a series of magnetic anomalies which run along the seafloor at the extinct, north–south trending, Adare spreading axis. The Adare spreading system continues unbroken into the Northern Basin underlying the adjacent Ross Sea continental shelf.

dEntrecasteaux Ridge Double oceanic ridge in the south-west Pacific Ocean

The d'EntrecasteauxRidge (DER) is a double oceanic ridge in the south-west Pacific Ocean, north of New Caledonia and west of Vanuatu Islands. It forms the northern extension of the New Caledonia–Loyalty Islands arc, and is now actively subducting in the Vanuatu subduction zone under the Vanuatu/New Hebrides arc. The subduction of the DER is responsible for the anomalous morphology of the central part of New Hebrides arc whose movement more closely matches the north-east direction of the subducting Australian Plate.

<span class="mw-page-title-main">Aleutian subduction zone</span> Convergence boundary between the North American Plate and the Pacific Plate

The Aleutian subduction zone is a 2,500 mi (4,000 km) long convergent boundary between the North American Plate and the Pacific Plate, that extends from the Alaska Range to the Kamchatka Peninsula. Here, the Pacific Plate is being subducted underneath the North American Plate and the rate of subduction changes from west to east from 7.5 to 5.1 cm per year. The Aleutian subduction zone includes two prominent features, the Aleutian Arc and the Aleutian Trench. The Aleutian Arc was created via volcanic eruptions from dehydration of the subducting slab at ~100 km depth. The Aleutian Trench is a narrow and deep morphology that occurs between the two converging plates as the subducting slab dives beneath the overriding plate.

<span class="mw-page-title-main">South Fiji Basin</span> Oceanic basin in the south-west Pacific Ocean between Fiji and New Zealand

The South Fiji Basin is a large 4 to 4.7 km deep oceanic basin in the south-west Pacific Ocean, south of Fiji. It was formed from the then Indo-Australian Plate and is delimited to the north west by the New Hebrides Trench, and the Hunter Fracture Zone, to the west by the Three Kings Ridge, to the east by the Lau-Colville Ridge, and to the south by the continental shelf of Zealandia.

References

Notes

  1. 1 2 Kawahata, Yamamuro & Ohta 1998 , Study area, p. 522
  2. 1 2 Kawahata, Ahagon & Eguchi 1997 , Study area and sediment sample, pp. 86–87
  3. Kaneko et al. 1998 , p. 12960
  4. Bracey 1983 , Caroline Basin, pp. 37–45

Sources

  • Bracey, D. R. (1983). Geophysics and tectonic development of the Caroline Basin (Report). U.S. Naval Oceanographic Office TR283. Retrieved 18 December 2016.[ dead link ]
  • Kaneko, I.; Takatsuki, Y.; Kamiya, H.; Kawae, S. (1998). "Water property and current distributions along the WHP‐P9 section (137°–142°) in the western North Pacific". Journal of Geophysical Research: Oceans. 103 (C6): 12959–12984. Bibcode:1998JGR...10312959K. doi: 10.1029/97JC03761 .
  • Kawahata, H.; Ahagon, N.; Eguchi, N. (1997). "Carbonate preservation variation in the Caroline Basin during the last 330 kyr" (PDF). Geochemical Journal. 31 (2): 85–103. Bibcode:1997GeocJ..31...85K. doi: 10.2343/geochemj.31.85 . Retrieved 18 December 2016.
  • Kawahata, H.; Yamamuro, M.; Ohta, H. (1998). "Seasonal and vertical variations of sinking particle fluxes in the West Caroline Basin" (PDF). Oceanologica Acta. 21 (4): 521–532. doi:10.1016/S0399-1784(98)80035-2 . Retrieved 18 December 2016.

3°S138°W / 3°S 138°W / -3; -138