In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. [1]
One usually makes the distinction between Whitehead's first and second lemma for the corresponding statements about first and second order cohomology, respectively, but there are similar statements pertaining to Lie algebra cohomology in arbitrary orders which are also attributed to Whitehead.
The first Whitehead lemma is an important step toward the proof of Weyl's theorem on complete reducibility.
Without mentioning cohomology groups, one can state Whitehead's first lemma as follows: Let be a finite-dimensional, semisimple Lie algebra over a field of characteristic zero, V a finite-dimensional module over it, and a linear map such that
Then there exists a vector such that for all . In terms of Lie algebra cohomology, this is, by definition, equivalent to the fact that for every such representation. The proof uses a Casimir element (see the proof below). [2]
Similarly, Whitehead's second lemma states that under the conditions of the first lemma, also .
Another related statement, which is also attributed to Whitehead, describes Lie algebra cohomology in arbitrary order: Given the same conditions as in the previous two statements, but further let be irreducible under the -action and let act nontrivially, so . Then for all . [3]
As above, let be a finite-dimensional semisimple Lie algebra over a field of characteristic zero and a finite-dimensional representation (which is semisimple but the proof does not use that fact).
Let where is an ideal of . Then, since is semisimple, the trace form , relative to , is nondegenerate on . Let be a basis of and the dual basis with respect to this trace form. Then define the Casimir element by
which is an element of the universal enveloping algebra of . Via , it acts on V as a linear endomorphism (namely, .) The key property is that it commutes with in the sense for each element . Also,
Now, by Fitting's lemma, we have the vector space decomposition such that is a (well-defined) nilpotent endomorphism for and is an automorphism for . Since commutes with , each is a -submodule. Hence, it is enough to prove the lemma separately for and .
First, suppose is a nilpotent endomorphism. Then, by the early observation, ; that is, is a trivial representation. Since , the condition on implies that for each ; i.e., the zero vector satisfies the requirement.
Second, suppose is an automorphism. For notational simplicity, we will drop and write . Also let denote the trace form used earlier. Let , which is a vector in . Then
Now,
and, since , the second term of the expansion of is
Thus,
Since is invertible and commutes with , the vector has the required property.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. The vector space together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative.
In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which is due to Jacques Dixmier.
In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.
In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.
In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: it is a set with a Lie algebra and a Lie coalgebra structure which are compatible.
In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.
In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent part. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form. Analogues of the Jordan-Chevalley decomposition exist for elements of linear algebraic groups, Lie algebras, and Lie groups, and the decomposition is an important tool in the study of these objects.
In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module
In mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, by restricting our attention to the simply connected Lie groups, the Lie group-Lie algebra correspondence will be one-to-one.
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context.
This is a glossary of properties and concepts in algebraic topology in mathematics.
This is a glossary of representation theory in mathematics.
In mathematics, specifically in representation theory, a semisimple representation is a linear representation of a group or an algebra that is a direct sum of simple representations. It is an example of the general mathematical notion of semisimplicity.
This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.
In abstract algebra, specifically the theory of Lie algebras, Serre's theorem states: given a root system , there exists a finite-dimensional semisimple Lie algebra whose root system is the given .
In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.