William Morris Kinnersley

Last updated

William Morris Kinnersley is an American physicist who is well known for his contributions to general relativity.

Kinnersley earned his Ph.D. from Caltech in 1968, under the direction of Jon Mathews. In 1969, he published an exact null dust solution to the Einstein field equation and thereby created the photon rocket, an object with mass propelled by the emission of light (radiation without mass). This solution remains one of the few known exact solutions with clear physical interpretations, and in consequence it is widely cited as an important breakthrough. In 1978, Kinnersley, C. Hoenselaers, and Basilis C. Xanthopoulos published an important solution generating method for solving the Einstein field equation.

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Photon</span> Elementary particle or quantum of light

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458 m/s. The photon belongs to the class of bosons.

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

The following is a timeline of gravitational physics and general relativity.

In theoretical physics, negative mass is a type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as the oppositely oriented acceleration for negative mass. It is used in certain speculative hypothetical technologies, such as time travel to the past and future, construction of traversable artificial wormholes, which may also allow for time travel, Krasnikov tubes, the Alcubierre drive, and potentially other types of faster-than-light warp drives. Currently, the closest known real representative of such exotic matter is a region of negative pressure density produced by the Casimir effect.

<span class="mw-page-title-main">Kerr metric</span> Exact solution for the Einstein field equations

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In theoretical physics, the Brans–Dicke theory of gravitation is a theoretical framework to explain gravitation. It is a competitor to Einstein's theory of general relativity. It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity. The gravitational constant G is not presumed to be constant but instead 1/G is replaced by a scalar field which can vary from place to place and with time.

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic solar-system tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by spacetime dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

<span class="mw-page-title-main">Brandon Carter</span> Australian physicist

Brandon Carter, is an Australian theoretical physicist, best known for his work on the properties of black holes and for being the first to name and employ the anthropic principle in its contemporary form. He is a researcher at the Meudon campus of the Laboratoire Univers et Théories, part of the CNRS.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

In mathematical physics, a null dust solution is a Lorentzian manifold in which the Einstein tensor is null. Such a spacetime can be interpreted as an exact solution of Einstein's field equation, in which the only mass–energy present in the spacetime is due to some kind of massless radiation.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). QED was so successful and accurately predictive that efforts were made to apply the same basic concepts for the other forces of nature. By the late 1970s, these efforts successfully utilized gauge theory in the strong nuclear force and weak nuclear force, producing the modern Standard Model of particle physics.

<span class="mw-page-title-main">Roy Kerr</span> New Zealand mathematician

Roy Patrick Kerr is a New Zealand mathematician who discovered the Kerr geometry, an exact solution to the Einstein field equation of general relativity. His solution models the gravitational field outside an uncharged rotating massive object, including a rotating black hole. His solution to Einstein's equations predicted spinning black holes before they were discovered.

In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.

In metric theories of gravitation, particularly general relativity, a static spherically symmetric perfect fluid solution is a spacetime equipped with suitable tensor fields which models a static round ball of a fluid with isotropic pressure.

The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions.

<span class="mw-page-title-main">ADM formalism</span>

The ADM formalism is a Hamiltonian formulation of general relativity that plays an important role in canonical quantum gravity and numerical relativity. It was first published in 1959.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

<span class="mw-page-title-main">Schwinger limit</span> Energy scale at which vacuum effects become important

In quantum electrodynamics (QED), the Schwinger limit is a scale above which the electromagnetic field is expected to become nonlinear. The limit was first derived in one of QED's earliest theoretical successes by Fritz Sauter in 1931 and discussed further by Werner Heisenberg and his student Hans Heinrich Euler. The limit, however, is commonly named in the literature for Julian Schwinger, who derived the leading nonlinear corrections to the fields and calculated the rate of electron–positron pair production in a strong electric field. The limit is typically reported as a maximum electric field or magnetic field before nonlinearity for the vacuum of

In general relativity, the relativistic disk expression refers to a class of axi-symmetric self-consistent solutions to Einstein's field equations corresponding to the gravitational field generated by axi-symmetric isolated sources. To find such solutions, one has to pose correctly and solve together the ‘outer’ problem, a boundary value problem for vacuum Einstein's field equations whose solution determines the external field, and the ‘inner’ problem, whose solution determines the structure and the dynamics of the matter source in its own gravitational field. Physically reasonable solutions must satisfy some additional conditions such as finiteness and positiveness of mass, physically reasonable kind of matter and finite geometrical size. Exact solutions describing relativistic static thin disks as their sources were first studied by Bonnor and Sackfield and Morgan and Morgan. Subsequently, several classes of exact solutions corresponding to static and stationary thin disks have been obtained by different authors.

References