Wolff algorithm

Last updated

The Wolff algorithm, [1] named after Ulli Wolff, is an algorithm for Monte Carlo simulation of the Ising model and Potts model in which the unit to be flipped is not a single spin (as in the heat bath or Metropolis algorithms) but a cluster of them. This cluster is defined as the set of connected spins sharing the same spin states, based on the Fortuin-Kasteleyn representation.

The Wolff algorithm is similar to the Swendsen–Wang algorithm, but different in that the former only flips one randomly chosen cluster with probability 1, while the latter flip every cluster independently with probability 1/2. It is shown numerically that flipping only one cluster decreases the autocorrelation time of the spin statistics.

The advantage of Wolff algorithm over other algorithms for magnetic spin simulations like single spin flip is that it allows non-local moves on the energy. One important consequence of this is that in some situations (e.g. ferromagnetic Ising model or fully frustrated Ising model), the scaling of the Multicanonic simulation is , better than , where z is the exponent associated with the critical slowing down phenomena.

Related Research Articles

<span class="mw-page-title-main">Lattice gauge theory</span> Theory of quantum gauge fields on a lattice

In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice.

Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space. This model allows one to focus on the effects in solids that occur due to the quantum nature of electrons and their mutual repulsive interactions without explicit introduction of the atomic lattice and structure making up a real material. Jellium is often used in solid-state physics as a simple model of delocalized electrons in a metal, where it can qualitatively reproduce features of real metals such as screening, plasmons, Wigner crystallization and Friedel oscillations.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution of the quantum many-body problem. The diverse flavors of quantum Monte Carlo approaches all share the common use of the Monte Carlo method to handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.

In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions.

<span class="mw-page-title-main">Wigner crystal</span>

A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. A gas of electrons moving in a uniform, inert, neutralizing background will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.

Quantum annealing (QA) is an optimization process for finding the global minimum of a given objective function over a given set of candidate solutions, by a process using quantum fluctuations. Quantum annealing is used mainly for problems where the search space is discrete with many local minima; such as finding the ground state of a spin glass or the traveling salesman problem. The term "quantum annealing" was first proposed in 1988 by B. Apolloni, N. Cesa Bianchi and D. De Falco as a quantum-inspired classical algorithm. It was formulated in its present form by T. Kadowaki and H. Nishimori in "Quantum annealing in the transverse Ising model" though an imaginary-time variant without quantum coherence had been discussed by A. B. Finnila, M. A. Gomez, C. Sebenik and J. D. Doll, in "Quantum annealing is a new method for minimizing multidimensional functions".

In statistical physics, the axialnext-nearest neighbor Ising model, usually known as the ANNNI model, is a variant of the Ising model in which competing ferromagnetic and antiferromagnetic exchange interactions couple spins at nearest and next-nearest neighbor sites along one of the crystallographic axes of the lattice. The model is a prototype for complicated spatially modulated magnetic superstructures in crystals.

An important question in statistical mechanics is the dependence of model behaviour on the dimension of the system. The shortcut model was introduced in the course of studying this dependence. The model interpolates between discrete regular lattices of integer dimension.

In applied mathematics, the numerical sign problem is the problem of numerically evaluating the integral of a highly oscillatory function of a large number of variables. Numerical methods fail because of the near-cancellation of the positive and negative contributions to the integral. Each has to be integrated to very high precision in order for their difference to be obtained with useful accuracy.

The Swendsen–Wang algorithm is the first non-local or cluster algorithm for Monte Carlo simulation for large systems near criticality. It has been introduced by Robert Swendsen and Jian-Sheng Wang in 1987 at Carnegie Mellon.

Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, and received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018. He was a co-editor of the Annual Review of Condensed Matter Physics from 2017-2019.

The Ziff–Gulari–Barshad (ZGB) model is a simple Monte Carlo method for catalytic reactions of oxidation of carbon monoxide to carbon dioxide on a surface using Monte-Carlo methods which captures correctly the essential dynamics: the phase transition between two poisoned states (either CO2- or O-poisoned) and a steady-state in between. It is named after Robert M. Ziff, Erdogan Gulari, and Yoav Barshad, who published it in 1986.

The following timeline starts with the invention of the modern computer in the late interwar period.

In statistics and physics, multicanonical ensemble is a Markov chain Monte Carlo sampling technique that uses the Metropolis–Hastings algorithm to compute integrals where the integrand has a rough landscape with multiple local minima. It samples states according to the inverse of the density of states, which has to be known a priori or be computed using other techniques like the Wang and Landau algorithm. Multicanonical sampling is an important technique for spin systems like the Ising model or spin glasses.

<span class="mw-page-title-main">Massimo Boninsegni</span> Theoretical condensed matter physicist

Massimo Boninsegni is an Italian-Canadian theoretical condensed matter physicist. He graduated with a Bachelor's degree in physics at the Universita' degli Studi di Genova in 1986.

In statistical mechanics, probability theory, graph theory, etc. the random cluster model is a random graph that generalizes and unifies the Ising model, Potts model, and percolation model. It is used to study random combinatorial structures, electrical networks, etc. It is also referred to as the RC model or sometimes the FK representation after its founders Kees Fortuin and Piet Kasteleyn.

The KBD algorithm is a cluster update algorithm designed for the fully frustrated Ising model in two dimensions, or more generally any two dimensional spin glass with frustrated plaquettes arranged in a checkered pattern. It is discovered in 1990 by Daniel Kandel, Radel Ben-Av, and Eytan Domany, and generalized by P. D. Coddington and L. Han in 1994. It is the inspiration for cluster algorithms used in quantum monte carlo simulations.

Replica cluster move in condensed matter physics refers to a family of non-local cluster algorithms used to simulate spin glasses. It is an extension of the Swendsen-Wang algorithm in that it generates non-trivial spin clusters informed by the interaction states on two replicas instead of just one. It is different from the replica exchange method, as it performs a non-local update on a fraction of the sites between the two replicas at the same temperature, while parallel tempering directly exchanges all the spins between two replicas at different temperature. However, the two are often used in conjunction to achieve state-of-the-art efficiency in simulating spin-glass models.

Shang-keng Ma was a Chinese theoretical physicist, known for his work on the theory of critical phenomena and random systems. He is known as the co-author with Bertrand Halperin and Pierre Hohenberg of a 1972 paper that "generalized the renormalization group theory to dynamical critical phenomena." Ma is also known as the co-author with Yoseph Imry of a 1975 paper and with Amnon Aharony and Imry of a 1976 paper that established the foundation of the random field Ising model (RFIM)

References

  1. Wolff, Ulli (1989-01-23). "Collective Monte Carlo Updating for Spin Systems". Physical Review Letters. 62 (4): 361–364. Bibcode:1989PhRvL..62..361W. doi:10.1103/PhysRevLett.62.361. PMID   10040213.