Wozencraft ensemble

Last updated

In coding theory, the Wozencraft ensemble is a set of linear codes in which most of codes satisfy the Gilbert-Varshamov bound. It is named after John Wozencraft, who proved its existence. The ensemble is described by Massey (1963), who attributes it to Wozencraft. Justesen (1972) used the Wozencraft ensemble as the inner codes in his construction of strongly explicit asymptotically good code.

Contents

Existence theorem

Theorem: Let For a large enough , there exists an ensemble of inner codes of rate , where , such that for at least values of has relative distance .

Here relative distance is the ratio of minimum distance to block length. And is the q-ary entropy function defined as follows:

In fact, to show the existence of this set of linear codes, we will specify this ensemble explicitly as follows: for , define the inner code

Here we can notice that and . We can do the multiplication since is isomorphic to .

This ensemble is due to Wozencraft and is called the Wozencraft ensemble.

For all , we have the following facts:

  1. For any

So is a linear code for every .

Now we know that Wozencraft ensemble contains linear codes with rate . In the following proof, we will show that there are at least those linear codes having the relative distance , i.e. they meet the Gilbert-Varshamov bound.

Proof

To prove that there are at least number of linear codes in the Wozencraft ensemble having relative distance , we will prove that there are at most number of linear codes having relative distance i.e., having distance

Notice that in a linear code, the distance is equal to the minimum weight of all codewords of that code. This fact is the property of linear code. So if one non-zero codeword has weight , then that code has distance

Let be the set of linear codes having distance Then there are linear codes having some codeword that has weight

Lemma. Two linear codes and with distinct and non-zero, do not share any non-zero codeword.
Proof. Suppose there exist distinct non-zero elements such that the linear codes and contain the same non-zero codeword Now since for some and similarly for some Moreover since is non-zero we have Therefore , then and This implies , which is a contradiction.

Any linear code having distance has some codeword of weight Now the Lemma implies that we have at least different such that (one such codeword for each linear code). Here denotes the weight of codeword , which is the number of non-zero positions of .

Denote

Then: [1]

So , therefore the set of linear codes having the relative distance has at least elements.

See also

Related Research Articles

Pauli matrices Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries. They are

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number . Similarly, an improper integral of a function, , is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In information theory, Shannon's source coding theorem establishes the limits to possible data compression, and the operational meaning of the Shannon entropy.

Inverse-gamma distribution Two-parameter family of continuous probability distributions

In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution. Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required.

In mathematics, Graeffe's method or Dandelin–Lobachesky–Graeffe method is an algorithm for finding all of the roots of a polynomial. It was developed independently by Germinal Pierre Dandelin in 1826 and Lobachevsky in 1834. In 1837 Karl Heinrich Gräffe also discovered the principal idea of the method. The method separates the roots of a polynomial by squaring them repeatedly. This squaring of the roots is done implicitly, that is, only working on the coefficients of the polynomial. Finally, Viète's formulas are used in order to approximate the roots.

In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature. More precisely, they are representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields.

In coding theory, Justesen codes form a class of error-correcting codes that have a constant rate, constant relative distance, and a constant alphabet size.

Deformation (physics) Transformation of a body from a reference configuration to a current configuration

In physics, deformation is the continuum mechanics transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.

Anatoly Karatsuba Russian mathematician

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

The purpose of this page is to provide supplementary materials for the ordinary least squares article, reducing the load of the main article with mathematics and improving its accessibility, while at the same time retaining the completeness of exposition.

Expander code

In coding theory, expander codes form a class of error-correcting codes that are constructed from bipartite expander graphs. Along with Justesen codes, expander codes are of particular interest since they have a constant positive rate, a constant positive relative distance, and a constant alphabet size. In fact, the alphabet contains only two elements, so expander codes belong to the class of binary codes. Furthermore, expander codes can be both encoded and decoded in time proportional to the block length of the code.

The Gilbert–Varshamov bound for linear codes is related to the general Gilbert–Varshamov bound, which gives a lower bound on the maximal number of elements in an error-correcting code of a given block length and minimum Hamming weight over a field . This may be translated into a statement about the maximum rate of a code with given length and minimum distance. The Gilbert–Varshamov bound for linear codes asserts the existence of q-ary linear codes for any relative minimum distance less than the given bound that simultaneously have high rate. The existence proof uses the probabilistic method, and thus is not constructive. The Gilbert–Varshamov bound is the best known in terms of relative distance for codes over alphabets of size less than 49. For larger alphabets, Goppa codes sometimes achieve an asymptotically better rate vs. distance tradeoff than is given by the Gilbert-Varshamov bound.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

In coding theory, folded Reed–Solomon codes are like Reed–Solomon codes, which are obtained by mapping Reed–Solomon codewords over a larger alphabet by careful bundling of codeword symbols.

Functional regression is a version of regression analysis when responses or covariates include functional data. Functional regression models can be classified into four types depending on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional and scalar covariates. In addition, functional regression models can be linear, partially linear, or nonlinear. In particular, functional polynomial models, functional single and multiple index models and functional additive models are three special cases of functional nonlinear models.

In mathematics, the injective tensor product of two topological vector spaces was introduced by Alexander Grothendieck and was used by him to define nuclear spaces.

References

  1. For the upper bound of the volume of Hamming ball check Bounds on the Volume of a Hamming ball