YAP (Prolog)

Last updated
YAP Prolog
Stable release
6.3.3 / 21 January 2013;11 years ago (2013-01-21)
Preview release
7.1 / 9 January 2016;8 years ago (2016-01-09)
Operating system Linux, Windows, Solaris, Mac OS X
Platform Programming language
License Perl Artistic License 2.0
Website www.dcc.fc.up.pt/~vsc/yap/

YAP is an open-source, high-performance implementation of the Prolog programming language developed at LIACC/Universidade do Porto and at COPPE Sistemas/UFRJ. Its Prolog engine is based in the WAM (Warren Abstract Machine), with several optimizations for better performance. YAP follows the Edinburgh tradition, and is largely compatible with the ISO-Prolog standard and with Quintus Prolog and SICStus Prolog. YAP has been developed since 1985. The original version was written in assembly, C and Prolog, and achieved high performance on m68k-based machines.

See also


Related Research Articles

Mercury is a functional logic programming language made for real-world uses. The first version was developed at the University of Melbourne, Computer Science department, by Fergus Henderson, Thomas Conway, and Zoltan Somogyi, under Somogyi's supervision, and released on April 8, 1995.

Prolog is a logic programming language that has its origins in artificial intelligence, automated theorem proving and computational linguistics.

In computer science, an abstract machine is a theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is similar to a mathematical function in that it receives inputs and produces outputs based on predefined rules. Abstract machines vary from literal machines in that they are expected to perform correctly and independently of hardware. Abstract machines are "machines" because they allow step-by-step execution of programmes; they are "abstract" because they ignore many aspects of actual (hardware) machines. A typical abstract machine consists of a definition in terms of input, output, and the set of allowable operations used to turn the former into the latter. They can be used for purely theoretical reasons as well as models for real-world computer systems. In the theory of computation, abstract machines are often used in thought experiments regarding computability or to analyse the complexity of algorithms. This use of abstract machines is fundamental to the field of computational complexity theory, such as finite state machines, Mealy machines, push-down automata, and Turing machines.

Poplog is a reflective, incrementally compiled software development computer programming integrated development environment and system platform for the programming languages POP-11, Common Lisp, Prolog, and Standard ML. It was created originally in the United Kingdom for teaching and research in artificial intelligence, at the University of Sussex, and later marketed as a commercial package for software development, teaching, and research. It was one of the initiatives supported for a time by the UK government-funded Alvey Programme.

The Fifth Generation Computer Systems was a 10-year initiative launched in 1982 by Japan's Ministry of International Trade and Industry (MITI) to develop computers based on massively parallel computing and logic programming. The project aimed to create an "epoch-making computer" with supercomputer-like performance and to establish a platform for future advancements in artificial intelligence. Although FGCS was ahead of its time, its ambitious goals ultimately led to commercial failure. However, on a theoretical level, the project significantly contributed to the development of concurrent logic programming.

SWI-Prolog is a free implementation of the programming language Prolog, commonly used for teaching and semantic web applications. It has a rich set of features, libraries for constraint logic programming, multithreading, unit testing, GUI, interfacing to Java, ODBC and others, literate programming, a web server, SGML, RDF, RDFS, developer tools, and extensive documentation.

Logic Programming Associates (LPA) is a company specializing in logic programming and artificial intelligence software. LPA was founded in 1980 and is widely known for its range of Prolog compilers, the Flex expert system toolkit and most recently, VisiRule.

ECLiPSe is a software system for the development and deployment of constraint logic programming applications, e.g., in the areas of optimization, planning, scheduling, resource allocation, timetabling, transport, etc. It is also suited for teaching most aspects of combinatorial problem solving, e.g., problem modeling, constraint programming, mathematical programming, and search techniques. It contains constraint solver libraries, a high-level modeling and control language, interfaces to third-party solvers, an integrated development environment and interfaces for embedding into host environments.

XSB is the name of a dialect of the Prolog programming language and its implementation developed at Stony Brook University in collaboration with the Katholieke Universiteit Leuven, the New University of Lisbon, Uppsala University and software vendor XSB, Inc.

λProlog, also written lambda Prolog, is a logic programming language featuring polymorphic typing, modular programming, and higher-order programming. These extensions to Prolog are derived from the higher-order hereditary Harrop formulas used to justify the foundations of λProlog. Higher-order quantification, simply typed λ-terms, and higher-order unification gives λProlog the basic supports needed to capture the λ-tree syntax approach to higher-order abstract syntax, an approach to representing syntax that maps object-level bindings to programming language bindings. Programmers in λProlog need not deal with bound variable names: instead various declarative devices are available to deal with binder scopes and their instantiations.

Logtalk is an object-oriented logic programming language that extends and leverages the Prolog language with a feature set suitable for programming in the large. It provides support for encapsulation and data hiding, separation of concerns and enhanced code reuse. Logtalk uses standard Prolog syntax with the addition of a few operators and directives.

B-Prolog was a high-performance implementation of the standard Prolog language with several extended features including matching clauses, action rules for event handling, finite-domain constraint solving, arrays and hash tables, declarative loops, and tabling. First released in 1994, B-Prolog is now a widely used CLP system. The constraint solver of B-Prolog was ranked top in two categories in the Second International Solvers Competition, and it also took the second place in P class in the second ASP solver competition and the second place overall in the third ASP solver competition. B-Prolog underpins the PRISM system, a logic-based probabilistic reasoning and learning system. B-Prolog is a commercial product, but it can be used for learning and non-profit research purposes free of charge. B-Prolog is not anymore actively developed, but it forms the basis for the Picat programming language.

The following Comparison of Prolog implementations provides a reference for the relative feature sets and performance of different implementations of the Prolog computer programming language. A comprehensive discussion of the most significant Prolog systems is presented in an article published in the 50-years of Prolog anniversary issue of the journal Theory and Practice of Logic Programming (TPLP).

Yap is an island in the Caroline Islands of the western Pacific Ocean. It may also refer to:

CLP(R) is a declarative programming language. It stands for constraint logic programming (real) where real refers to the real numbers. It can be considered and is generally implemented as a superset or add-on package for a Prolog implementation.

SICStus Prolog is a proprietary, ISO-conforming implementation of the logic programming language Prolog. It is developed by the Swedish Institute of Computer Science since 1985 and puts a strong focus on performance and scalability.

A high-level language computer architecture (HLLCA) is a computer architecture designed to be targeted by a specific high-level programming language (HLL), rather than the architecture being dictated by hardware considerations. It is accordingly also termed language-directed computer design, coined in McKeeman (1967) and primarily used in the 1960s and 1970s. HLLCAs were popular in the 1960s and 1970s, but largely disappeared in the 1980s. This followed the dramatic failure of the Intel 432 (1981) and the emergence of optimizing compilers and reduced instruction set computer (RISC) architectures and RISC-like complex instruction set computer (CISC) architectures, and the later development of just-in-time compilation (JIT) for HLLs. A detailed survey and critique can be found in Ditzel & Patterson (1980).

ProbLog is a probabilistic logic programming language that extends Prolog with probabilities. It minimally extends Prolog by adding the notion of a probabilistic fact, which combines the idea of logical atoms and random variables. Similarly to Prolog, ProbLog can query an atom. While Prolog returns the truth value of the queried atom, ProbLog returns the probability of it being true.

Quintus Prolog is a proprietary implementation of the Prolog programming language based on the Warren Abstract Machine. Originally developed by Quintus Computer Science, it is currently maintained by SICS. It was long known as the most highly-performing implementation of Prolog, and the early 1990s, it defined a de facto standard for Prolog implementations.