This article needs additional citations for verification .(May 2007) |
Z-order is an ordering of overlapping two-dimensional objects, such as windows in a stacking window manager, shapes in a vector graphics editor, or objects in a 3D application. [1] One of the features of a typical GUI is that windows may overlap, so that one window hides part or all of another. When two windows overlap, their Z-order determines which one appears on top of the other.
The term "Z-order" refers to the order of objects along the Z-axis. In coordinate geometry, X typically refers to the horizontal axis (left to right), Y to the vertical axis (up and down), and Z refers to the axis perpendicular to the other two (forward or backward). One can think of the windows in a GUI as a series of planes parallel to the surface of the monitor. The windows are therefore stacked along the Z-axis, and the Z-order information thus specifies the front-to-back ordering of the windows on the screen. An analogy would be some sheets of paper scattered on top of a table, each sheet being a window, the table your computer screen, and the top sheet having the highest Z value.
Typically, users of a GUI can affect the Z-order by selecting a window to be brought to the foreground (that is, "above" or "in front of" all the other windows). Some window managers allow interaction with windows while they are not in the foreground, while others will bring a window to the front whenever it receives input from the user. It is also possible for special windows to be designated "always on top"; these are then fixed to the top of the Z-order so that (with few exceptions) no other window can overlap them.
When dealing with visual objects on a computer screen, an object with a Z-order of 1 would be visually "underneath" an object with a Z-order of 2 or greater. This is the same as making "layers" of objects where the Z-order determines what object is on top of another. An HTML page can use CSS to specify the Z-order so that some objects can be layered over others.
Z-ordering is also used in 3D applications to determine object visibility based on overlap from other objects. This confers a speed advantage to the user as the computer does not need to render unseen objects. [1] In practice, of course, some objects may be only partially obscured, and this is a complication that must be taken into account.
In early real-time 3D graphics, Z-order was applied on a per-polygon basis to avoid using Z-buffer, which was considered expensive at the time. In modern 3D graphics, Z-order is used for order-dependent rendering, for example with semi-transparent objects. It can also be used to reduce the problem of Z-fighting, by either rendering farther objects first and then using weak inequality as the depth test or, conversely, rendering front-to-back and using strict inequality.
The actual number assigned to a particular place in the Z-order is sometimes known as the z-index. In particular the CSS property that sets the stack order of specific elements is known as the z-index. An element with greater stack order is always in front of another element with lower stack order. [2]
p{position:relative;z-index:-1;}
Negative stack orders can also be used in the same manner. A negative value will appear behind a positive one. z-index
only works on elements that have a position value (e.g. position: relative;
) and for many coders, this one of the first things to investigate when debugging why the z-index isn't working. [3]
Like all other CSS properties, it can be set with JavaScript as well with the following syntax:
object.style.zIndex='1';
A graphical user interface, or GUI, is a form of user interface that allows users to interact with electronic devices through graphical icons and visual indicators such as secondary notation. In many applications, GUIs are used instead of text-based UIs, which are based on typed command labels or text navigation. GUIs were introduced in reaction to the perceived steep learning curve of command-line interfaces (CLIs), which require commands to be typed on a computer keyboard.
The history of the graphical user interface, understood as the use of graphic icons and a pointing device to control a computer, covers a five-decade span of incremental refinements, built on some constant core principles. Several vendors have created their own windowing systems based on independent code, but with basic elements in common that define the WIMP "window, icon, menu and pointing device" paradigm.
2D computer graphics is the computer-based generation of digital images—mostly from two-dimensional models and by techniques specific to them. It may refer to the branch of computer science that comprises such techniques or to the models themselves.
A depth buffer, also known as a z-buffer, is a type of data buffer used in computer graphics to represent depth information of objects in 3D space from a particular perspective. The depth is stored as a height map of the scene, the values representing a distance to camera, with 0 being the closest. The encoding scheme may be flipped with the highest number being the value closest to camera. Depth buffers are an aid to rendering a scene to ensure that the correct polygons properly occlude other polygons. Z-buffering was first described in 1974 by Wolfgang Straßer in his PhD thesis on fast algorithms for rendering occluded objects. A similar solution to determining overlapping polygons is the painter's algorithm, which is capable of handling non-opaque scene elements, though at the cost of efficiency and incorrect results.
In computing, a windowing system is a software suite that manages separately different parts of display screens. It is a type of graphical user interface (GUI) which implements the WIMP paradigm for a user interface.
Ray casting is the methodological basis for 3D CAD/CAM solid modeling and image rendering. It is essentially the same as ray tracing for computer graphics where virtual light rays are "cast" or "traced" on their path from the focal point of a camera through each pixel in the camera sensor to determine what is visible along the ray in the 3D scene. The term "Ray Casting" was introduced by Scott Roth while at the General Motors Research Labs from 1978–1980. His paper, "Ray Casting for Modeling Solids", describes modeled solid objects by combining primitive solids, such as blocks and cylinders, using the set operators union (+), intersection (&), and difference (-). The general idea of using these binary operators for solid modeling is largely due to Voelcker and Requicha's geometric modelling group at the University of Rochester. See solid modeling for a broad overview of solid modeling methods. This figure on the right shows a U-Joint modeled from cylinders and blocks in a binary tree using Roth's ray casting system in 1979.
A stacking window manager is a window manager that draws and allows windows to overlap, without using a compositing algorithm. All window managers that allow the overlapping of windows but are not compositing window managers are considered stacking window managers, although it is possible that not all use exactly the same methods. Other window managers that are not considered stacking window managers are those that do not allow the overlapping of windows, which are called tiling window managers.
In 3D computer graphics, hidden-surface determination is the process of identifying what surfaces and parts of surfaces can be seen from a particular viewing angle. A hidden-surface determination algorithm is a solution to the visibility problem, which was one of the first major problems in the field of 3D computer graphics. The process of hidden-surface determination is sometimes called hiding, and such an algorithm is sometimes called a hider. When referring to line rendering it is known as hidden-line removal. Hidden-surface determination is necessary to render a scene correctly, so that one may not view features hidden behind the model itself, allowing only the naturally viewable portion of the graphic to be visible.
In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.
Z-fighting, also called stitching or planefighting, is a phenomenon in 3D rendering that occurs when two or more primitives have very similar distances to the camera. This would cause them to have near-similar or identical values in the z-buffer, which keeps track of depth. This then means that when a specific pixel is being rendered, it is ambiguous which one of the two primitives are drawn in that pixel because the z-buffer cannot distinguish precisely which one is farther from the other. If one pixel was unambiguously closer, the less close one could be discarded. It is particularly prevalent with coplanar polygons, where two faces occupy essentially the same space, with neither in front. As a result, affected pixels are rendered with fragments from one polygon or the other arbitrarily, in a manner determined by the precision of the z-buffer. It can also vary as the scene or camera is changed, causing one polygon to "win" the z test, then another, and so on. The overall effect is flickering, noisy rasterization of two polygons which "fight" to color the screen pixels. This problem is usually caused by limited sub-pixel precision, floating point and fixed point round-off errors.
A window manager is system software that controls the placement and appearance of windows within a windowing system in a graphical user interface. Most window managers are designed to help provide a desktop environment. They work in conjunction with the underlying graphical system that provides required functionality—support for graphics hardware, pointing devices, and a keyboard—and are often written and created using a widget toolkit.
The Direct Rendering Infrastructure (DRI) is the framework comprising the modern Linux graphics stack which allows unprivileged user-space programs to issue commands to graphics hardware without conflicting with other programs. The main use of DRI is to provide hardware acceleration for the Mesa implementation of OpenGL. DRI has also been adapted to provide OpenGL acceleration on a framebuffer console without a display server running.
The computer graphics pipeline, also known as the rendering pipeline, or graphics pipeline, is a framework within computer graphics that outlines the necessary procedures for transforming a three-dimensional (3D) scene into a two-dimensional (2D) representation on a screen. Once a 3D model is generated, the graphics pipeline converts the model into a visually perceivable format on the computer display. Due to the dependence on specific software, hardware configurations, and desired display attributes, a universally applicable graphics pipeline does not exist. Nevertheless, graphics application programming interfaces (APIs), such as Direct3D, OpenGL and Vulkan were developed to standardize common procedures and oversee the graphics pipeline of a given hardware accelerator. These APIs provide an abstraction layer over the underlying hardware, relieving programmers from the need to write code explicitly targeting various graphics hardware accelerators like AMD, Intel, Nvidia, and others.
Real-time computer graphics or real-time rendering is the sub-field of computer graphics focused on producing and analyzing images in real time. The term can refer to anything from rendering an application's graphical user interface (GUI) to real-time image analysis, but is most often used in reference to interactive 3D computer graphics, typically using a graphics processing unit (GPU). One example of this concept is a video game that rapidly renders changing 3D environments to produce an illusion of motion.
Clipping, in the context of computer graphics, is a method to selectively enable or disable rendering operations within a defined region of interest. Mathematically, clipping can be described using the terminology of constructive geometry. A rendering algorithm only draws pixels in the intersection between the clip region and the scene model. Lines and surfaces outside the view volume are removed.
In computing, hardware overlay, a type of video overlay, provides a method of rendering an image to a display screen with a dedicated memory buffer inside computer video hardware. The technique aims to improve the display of a fast-moving video image — such as a computer game, a DVD, or the signal from a TV card. Most video cards manufactured since about 1998 and most media players support hardware overlay.
Retained mode in computer graphics is a major pattern of API design in graphics libraries, in which
A compositing manager, or compositor, is software that provides applications with an off-screen buffer for each window. The compositing manager composites the window buffers into an image representing the screen and writes the result into the display memory.
Cobalt is a parametric-based computer-aided design (CAD) and 3D modeling program that runs on both Macintosh and Microsoft Windows operating systems. The program combines the direct-modeling way to create and edit objects and the highly structured, history-driven parametric way exemplified by programs like Pro/ENGINEER. A product of Ashlar-Vellum, Cobalt is Wireframe-based and history-driven with associativity and 2D equation-driven parametrics and constraints. It offers surfacing tools, mold design tools, detailing, and engineering features. Cobalt includes a library of 149,000 mechanical parts.
This is a glossary of terms relating to computer graphics.