Zorich's theorem

Last updated

In mathematical analysis, Zorich's theorem was proved by Vladimir A. Zorich in 1967. [1] The result was conjectured by M. A. Lavrentev in 1938. [2]

Theorem

Every locally homeomorphic quasiregular mapping for , is a homeomorphism of . [3]

The fact that there is no such result for is easily shown using the exponential function. [4]

References

  1. Zorič, V. A. (1967). "Homeomorphism of quasiconformal space maps". Proceedings of the USSR Academy of Sciences . 176: 31–34. MR   0223568. As cited by Zorich (1992)
  2. Lavrentieff, M. (1938). "Sur un critère différentiel des transformations homéomorphes des domaines à trois dimensions". Proceedings of the USSR Academy of Sciences . 20: 241–242. As cited by Zorich (1992)
  3. Zorich, Vladimir A. (1992). "The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems". In Vuorinen, Matti (ed.). Quasiconformal Space Mappings: A collection of surveys 1960-1990. Lecture Notes in Mathematics. Vol. 1508. Germany: Springer-Verlag. pp. 132–148. doi:10.1007/BFB0094243. ISBN   3-540-55418-1. LCCN   92012192. OCLC   25675026. S2CID   116148715 . Retrieved February 10, 2024.
  4. Zorich (1992), p. 135.