Quasiregular map

Last updated

In the mathematical field of analysis, quasiregular maps are a class of continuous maps between Euclidean spaces Rn of the same dimension or, more generally, between Riemannian manifolds of the same dimension, which share some of the basic properties with holomorphic functions of one complex variable.

Contents

Motivation

The theory of holomorphic (=analytic) functions of one complex variable is one of the most beautiful and most useful parts of the whole mathematics.

One drawback of this theory is that it deals only with maps between two-dimensional spaces (Riemann surfaces). The theory of functions of several complex variables has a different character, mainly because analytic functions of several variables are not conformal. Conformal maps can be defined between Euclidean spaces of arbitrary dimension, but when the dimension is greater than 2, this class of maps is very small: it consists of Möbius transformations only. This is a theorem of Joseph Liouville; relaxing the smoothness assumptions does not help, as proved by Yurii Reshetnyak. [1]

This suggests the search of a generalization of the property of conformality which would give a rich and interesting class of maps in higher dimension.

Definition

A differentiable map f of a region D in Rn to Rn is called K-quasiregular if the following inequality holds at all points in D:

.

Here K  1 is a constant, Jf is the Jacobian determinant, Df is the derivative, that is the linear map defined by the Jacobi matrix, and ||·|| is the usual (Euclidean) norm of the matrix.

The development of the theory of such maps showed that it is unreasonable to restrict oneself to differentiable maps in the classical sense, and that the "correct" class of maps consists of continuous maps in the Sobolev space W1,n
loc
whose partial derivatives in the sense of distributions have locally summable n-th power, and such that the above inequality is satisfied almost everywhere. This is a formal definition of a K-quasiregular map. A map is called quasiregular if it is K-quasiregular with some K. Constant maps are excluded from the class of quasiregular maps.

Properties

The fundamental theorem about quasiregular maps was proved by Reshetnyak: [2]

Quasiregular maps are open and discrete.

This means that the images of open sets are open and that preimages of points consist of isolated points. In dimension 2, these two properties give a topological characterization of the class of non-constant analytic functions: every continuous open and discrete map of a plane domain to the plane can be pre-composed with a homeomorphism, so that the result is an analytic function. This is a theorem of Simion Stoilov.

Reshetnyak's theorem implies that all pure topological results about analytic functions (such that the Maximum Modulus Principle, Rouché's theorem etc.) extend to quasiregular maps.

Injective quasiregular maps are called quasiconformal. A simple example of non-injective quasiregular map is given in cylindrical coordinates in 3-space by the formula

This map is 2-quasiregular. It is smooth everywhere except the z-axis. A remarkable fact is that all smooth quasiregular maps are local homeomorphisms. Even more remarkable is that every quasiregular local homeomorphism Rn  Rn, where n  3, is a homeomorphism (this is a theorem of Vladimir Zorich [2] ).

This explains why in the definition of quasiregular maps it is not reasonable to restrict oneself to smooth maps: all smooth quasiregular maps of Rn to itself are quasiconformal.

Rickman's theorem

Many theorems about geometric properties of holomorphic functions of one complex variable have been extended to quasiregular maps. These extensions are usually highly non-trivial.

Perhaps the most famous result of this sort is the extension of Picard's theorem which is due to Seppo Rickman: [3]

A K-quasiregular mapRn  Rncan omit at most a finite set.

When n = 2, this omitted set can contain at most one point (this is a simple extension of Picard's theorem). But when n > 2, the omitted set can contain more than onr point, and its cardinality can be estimated from above in terms of n and K. In fact, any finite set can be omitted, as shown by David Drasin and Pekka Pankka. [4]

Connection with potential theory

If f is an analytic function, then log |f| is subharmonic, and harmonic away from the zeros of f. The corresponding fact for quasiregular maps is that log |f| satisfies a certain non-linear partial differential equation of elliptic type. This discovery of Reshetnyak stimulated the development of non-linear potential theory, which treats this kind of equations as the usual potential theory treats harmonic and subharmonic functions.

See also

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

<span class="mw-page-title-main">Riemann surface</span> One-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In the mathematical field of complex analysis, Nevanlinna theory is part of the theory of meromorphic functions. It was devised in 1925, by Rolf Nevanlinna. Hermann Weyl called it "one of the few great mathematical events of (the twentieth) century." The theory describes the asymptotic distribution of solutions of the equation f(z) = a, as a varies. A fundamental tool is the Nevanlinna characteristic T(r, f) which measures the rate of growth of a meromorphic function.

In mathematics, the Schwarzian derivative is an operator similar to the derivative which is invariant under Möbius transformations. Thus, it occurs in the theory of the complex projective line, and in particular, in the theory of modular forms and hypergeometric functions. It plays an important role in the theory of univalent functions, conformal mapping and Teichmüller spaces. It is named after the German mathematician Hermann Schwarz.

In complex analysis, Picard's great theorem and Picard's little theorem are related theorems about the range of an analytic function. They are named after Émile Picard.

In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein. A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry.

In mathematics, a pseudogroup is a set of diffeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation of the concept of a group, originating however from the geometric approach of Sophus Lie to investigate symmetries of differential equations, rather than out of abstract algebra. The modern theory of pseudogroups was developed by Élie Cartan in the early 1900s.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, plurisubharmonic functions form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions plurisubharmonic functions can be defined in full generality on complex analytic spaces.

In mathematical complex analysis, a quasiconformal mapping, introduced by Grötzsch (1928) and named by Ahlfors (1935), is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity.

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

Geometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem.

In the theory of functions of several complex variables, Hartogs's extension theorem is a statement about the singularities of holomorphic functions of several variables. Informally, it states that the support of the singularities of such functions cannot be compact, therefore the singular set of a function of several complex variables must 'go off to infinity' in some direction. More precisely, it shows that an isolated singularity is always a removable singularity for any analytic function of n > 1 complex variables. A first version of this theorem was proved by Friedrich Hartogs, and as such it is known also as Hartogs's lemma and Hartogs's principle: in earlier Soviet literature, it is also called the Osgood–Brown theorem, acknowledging later work by Arthur Barton Brown and William Fogg Osgood. This property of holomorphic functions of several variables is also called Hartogs's phenomenon: however, the locution "Hartogs's phenomenon" is also used to identify the property of solutions of systems of partial differential or convolution equations satisfying Hartogs-type theorems.

In mathematics, the distortion is a measure of the amount by which a function from the Euclidean plane to itself distorts circles to ellipses. If the distortion of a function is equal to one, then it is conformal; if the distortion is bounded and the function is a homeomorphism, then it is quasiconformal. The distortion of a function ƒ of the plane is given by

In mathematical analysis, Zorich's theorem was proved by Vladimir A. Zorich in 1967. The result was conjectured by M. A. Lavrentev in 1938.

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by Pfluger (1961) and Tienari (1962), in the older literature they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems.

References

  1. Yu. G. Reshetnyak (1994). Stability theorems in geometry and analysis. Kluwer.
  2. 1 2 Yu. G. Reshetnyak (1989). Space mappings with bounded distortion. American Mathematical Society.
  3. S. Rickman (1993). Quasiregular mappings. Springer Verlag.
  4. D. Drasin; Pekka Pankka (2015). "Sharpness of Rickman's Picard theorem in all dimensions". Acta Math. Vol. 214. pp. 209–306.