2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase

Last updated
2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase
MenDpicture2.png
This image shows the two chains that come together to make up this enzyme
Identifiers
EC no. 2.2.1.9
CAS no. 122007-88-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, SEPHCHC synthase (EC EC 2.2.1.9), encoded by menD gene in E. coli , is an enzyme that catalyzes the second step of menaquinone (vitamin K2) biosynthesis. The two substrates of this enzyme are 2-oxoglutarate and isochorismate. The products of this enzyme are 5-enolpyruvoyl-6-hydroxy-2-succinyl-cyclohex-3-ene-1-carboxylate and CO2. It belongs to the transferase family.

Contents

Classification

This enzyme belongs to a family of enzymes that transfer aldehyde or ketonic groups. To be specific, this enzyme belongs to the transketolase and transaldolase families. Common names for the enzyme are:

Reaction

In the biosynthesis of vitamin K, SEPHCHC is involved in the second step of the pathway. [1] The type of reaction is decarboxylating, and to have maximum activity, this enzymes uses the cofactor Mg2+, a magnesium ion. [2] In previous years, it was thought that this reaction led to SHCHC, the product MenH. After further research, we now know that this reaction is a new step in the pathway. The actual product of this enzyme can lose a pyruvate spontaneously. [3]

Step 2 in the biosynthesis of menaquinone MenD.png
Step 2 in the biosynthesis of menaquinone

Structure

The structures reveal a stable dimer-of-dimers association in agreement with gel filtration and analytical studies confirm the classification of MenD in the pyruvate oxidase family. The active site is highly basic with a hydrophobic patch. These features match with the chemical properties of the substrates. [4]

Homologues

There are many similar structures MenD. Though it is commonly found in E. Coli, but can be found in other organisms as well. Bacillus subtilis and Mycobacterium tuberculosis are two homologues. All of the organisms share something in common, being that catalyze decarboxylation reactions.

Related Research Articles

<span class="mw-page-title-main">Citric acid cycle</span> Chemical reactions to release energy in cells

The citric acid cycle —also known as the Krebs cycle, Szent-Györgyi-Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. The Krebs cycle is used by organisms that respire (as opposed to organisms that ferment) to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a 'cycle', it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

The crotonase family comprises mechanistically diverse proteins that share a conserved trimeric quaternary structure, the core of which consists of 4 turns of a (beta/beta/alpha)n superhelix.

<span class="mw-page-title-main">Isochorismate synthase</span>

Isochorismate synthase ( EC 5.4.4.2) is an isomerase enzyme that catalyzes the first step in the biosynthesis of vitamin K2 (menaquinone) in Escherichia coli.

In enzymology, an isochorismatase (EC 3.3.2.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cystathionine beta-lyase</span> Enzyme

Cystathionine beta-lyase, also commonly referred to as CBL or β-cystathionase, is an enzyme that primarily catalyzes the following α,β-elimination reaction

<span class="mw-page-title-main">Anthranilate synthase</span>

The enzyme anthranilate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate lyase</span>

The enzyme chorismate lyase catalyzes the first step in ubiquinone biosynthesis, the removal of pyruvate from chorismate, to yield 4-hydroxybenzoate in Escherichia coli and other Gram-negative bacteria. It belongs to the family of lyases, specifically the oxo-acid-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is chorismate pyruvate-lyase (4-hydroxybenzoate-forming). Other names in common use include CL, CPL, and UbiC.

<span class="mw-page-title-main">Naphthoate synthase</span>

The enzyme 1,4-dihydroxy-2-naphthoyl-CoA synthase catalyzes the sixth step in the biosynthesis of phylloquinone and menaquinone, the two forms of vitamin K. In E. coli, 1,4-dihydroxy-2-naphthoyl-CoA synthase, formerly known as naphthoate synthase, is encoded by menB and uses O-succinylbenzoyl-CoA as a substrate and converts it to 1,4-dihydroxy-2-naphthoyl-CoA.

<span class="mw-page-title-main">Aminodeoxychorismate synthase</span>

In enzymology, an aminodeoxychorismate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">O-succinylbenzoate—CoA ligase</span>

o-Succinylbenzoate—CoA ligase, encoded from the menE gene in Escherichia coli, catalyzes the fifth reaction in the synthesis of menaquinone. This pathway is called 1, 4-dihydroxy-2-naphthoate biosynthesis I. Vitamin K is a quinone that serves as an electron transporter during anaerobic respiration. This process of anaerobic respiration allows the bacteria to generate the energy required to survive.

In enzymology, a 1-deoxy-d-xylulose-5-phosphate synthase (EC 2.2.1.7) is an enzyme in the non-mevalonate pathway that catalyzes the chemical reaction

2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase, also known as SHCHC synthase is encoded by the menH gene in Escherichia coli and functions in the synthesis of vitamin K. The specific step in the synthetic pathway that SHCHC synthase catalyzes is the conversion of 5-enolpyruvoyl-6-hydroxy-2-succinylcyclohex-3-ene-1-carboxylate to (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate and pyruvate.

<span class="mw-page-title-main">Pyridoxine 5'-phosphate synthase</span> Class of enzymes

In enzymology, a pyridoxine 5'-phosphate synthase (EC 2.6.99.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

<span class="mw-page-title-main">DAHP synthase</span> Class of enzymes

3-Deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase is the first enzyme in a series of metabolic reactions known as the shikimate pathway, which is responsible for the biosynthesis of the amino acids phenylalanine, tyrosine, and tryptophan. Since it is the first enzyme in the shikimate pathway, it controls the amount of carbon entering the pathway. Enzyme inhibition is the primary method of regulating the amount of carbon entering the pathway. Forms of this enzyme differ between organisms, but can be considered DAHP synthase based upon the reaction that is catalyzed by this enzyme.

1-4-dihydroxy-2-napthoate (DHNA) polyprenyltransferase (EC 2.5.1.74)is an enzyme that catalyzes the chemical reaction: all-trans-nonaprenyl diphosphate + 1-4-dihydroxy-2-napthoate + H+ demethylmenaquinol-9 + diphosphate + carbon dioxide

<span class="mw-page-title-main">O-succinylbenzoate synthase</span>

o-Succinylbenzoate synthase (OSBS) (EC 4.2.1.113) is an enzyme encoded by the menC gene in E.coli, and catalyzes the dehydration of 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) to form 4-(2'-carboxyphenyl)-4-oxobutyrate, also called o-succinylbenzoate or OSB, hence the name of the enzyme. This reaction is the fourth step in the menaquinone biosynthetic pathway, which is used by bacteria to synthesize menaquinone, also known as vitamin K2.

<span class="mw-page-title-main">Isochorismate lyase</span>

Isochorismate pyruvate lyase is an enzyme responsible for catalyzing part of the pathway involved in the formation of salicylic acid. More specifically, IPL will use isochorismate as a substrate and convert it into salicylate and pyruvate. IPL is a PchB enzyme originating from the pchB gene in Pseudomonas aeruginosa.

<span class="mw-page-title-main">Dihydrodipicolinate synthase</span> Class of enzymes

4-Hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7, dihydrodipicolinate synthase, dihydropicolinate synthetase, dihydrodipicolinic acid synthase, L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing), dapA (gene)) is an enzyme with the systematic name L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing; (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinate-forming). This enzyme catalyses the following chemical reaction

References

  1. "Enzyme entry EC: 2.2.1.9". ExPASy.
  2. "The Enzyme List Class 2" (PDF). September 2010. Retrieved 25 August 2016.
  3. "Enzyme 2.2.1.9". KEGG.
  4. PDB: 2jla ; Dawson A, Fyfe PK, Hunter WN (December 2008). "Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase)". Journal of Molecular Biology. 384 (5): 1353–68. doi:10.1016/j.jmb.2008.10.048. PMC   3656419 . PMID   18983854.