3-Dimethylaminoacrolein

Last updated
3-Dimethylaminoacrolein
3-Dimethylaminoacrolein Struktur.svg
Names
Preferred IUPAC name
(2E)-3-(Dimethylamino)prop-2-enal
Other names
3-Dimethylaminopropenal
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.011.962 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 213-157-7
PubChem CID
UNII
  • InChI=1S/C5H9NO/c1-6(2)4-3-5-7/h3-5H,1-2H3/b4-3+
    Key: RRLMPLDPCKRASL-ONEGZZNKSA-N
  • CN(C)/C=C/C=O
Properties
C5H9NO
Molar mass 99.133 g·mol−1
AppearanceClear, faintly yellow [1] to dark brown liquid [2]
Density 0.99 g·cm −3 at 25°C [1]
Boiling point *91 °C at 0.1 kPa [1]
  • 133–144 °C [3]
  • 270–273 °C [2]
Soluble [3]
Solubility in methanol, [4] 1,2-dichloroethane [5] Soluble
Hazards
GHS labelling:
GHS-pictogram-acid.svg
Danger
H314
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

3-Dimethylaminoacrolein is an organic compound with the formula Me2NC(H)=CHCHO. It is a pale yellow water-soluble liquid. The compound has a number of useful and unusual properties, e.g. it "causes a reversal of the hypnotic effect of morphine in mice" and has a "stimulating effect in humans". [3]

Contents

It is a stable and comparably nontoxic precursor for the genotoxic, mutagenic, and potentially carcinogenic malondialdehyde. [6] The compound can be thought of as vinylogous dimethylformamide (DMF) and combines the functionalities of an unsaturated aldehyde and an enamine. Therefore, 3-dimethylaminoacrolein and vinamidines derived therefrom (composed of vinylogous amidines) or vinamidinium salts (substituted 1,5-diazapentadienes) [7] can be used as reactive molecular building blocks for the formation of nitrogen-containing heterocycles, such as pyridines, pyrimidines, pyrroles or pyrazoles. [8]

Preparation

3-Dimethylaminoacrolein is obtained by the addition of dimethylamine to the triple bond of propynal (propargyl aldehyde) via a Reppe vinylation. [3]

Synthese of Dimethylaminoacrolein from propynal. 3-Dimethylaminoacrolein Synthese aus Propargylaldehyd.svg
Synthese of Dimethylaminoacrolein from propynal.

Propynal is however an inappropriate starting material for industrial synthesis because of its tendency to explode. [9] Vinyl ethers (such as ethyl vinyl ether) are more suited. [10] They react with phosgene and dimethylformamide (which forms in-situ the Vilsmeier reagent) in 68% yield to 3-ethoxypropenylidene dimethylammonium chloride, an enol ether iminium salt. In the weakly alkaline medium, 3-dimethylaminoacrolein is formed therefrom, which cleaves dimethylamine to form propanedial upon exposure to strong bases (such as sodium hydroxide).

Synthesis of dimethylaminoacrolein as described by Arnold. 3-Dimethylaminoacrolein Synthese nach Z. Arnold.svg
Synthesis of dimethylaminoacrolein as described by Arnold.

In an alternative route, isobutyl vinyl ether reacts with the iminium chloride derived from DMF and phosgene. The conversion can be implemented in a continuous process. [4] The iminium salt yields 3-dimethylaminoacrolein in dilute sodium hydroxide solution in 86% yield. [11]

Synthesis of 3-dimethylaminoacrolein via isobutylvinylether. 3-Dimethylaminoacrolein Synthese mit Isobutylvinylether.svg
Synthesis of 3-dimethylaminoacrolein via isobutylvinylether.

Instead of phosgene, the iminium salt can also be prepared via an inorganic acid chloride, such as phosphoryl trichloride or an organic acid chloride, such as oxalyl chloride.

Use

Reactions with 3-dimethylaminoacrolein

3-Dimethylaminoacrolein can be used to introduce unsaturated and reactive C3 groups into CH-acidic and nucleophilic compounds.

The activated aldehyde group of 3-dimethylaminoacrolein reacts quantitatively with dialkyl sulfates such as dimethyl sulfate. The products are reactive but unstable [12] decompose at 110 °C back into the starting materials. The products can be easily transformed with nucleophiles such as alkoxides or amines into the corresponding vinylogous amide acetals or amidines. [13]

Reaktionen vinyloger Amidine nach Bredereck Reaktionen vinyloger Amidine.svg
Reaktionen vinyloger Amidine nach Bredereck

The stable 3-dimethylaminoacrolein dimethyl acetal is obtained by reaction with sodium methoxide in 62% yield. 3-Dimethylaminoacrolein can be reacted with CH-acidic compounds (such as malononitrile) to 1,3-butadiene derivatives or with cyclopentadiene to an aminofulvene.

With guanidine, 3-dimethylaminoacrolein forms almost quantitatively 2-aminopyrimidine. [4]

Synthese von 2-Aminopyrimidin aus 3-Dimethylaminoacrolein Synthese von 2-Aminopyrimidin.svg
Synthese von 2-Aminopyrimidin aus 3-Dimethylaminoacrolein

The amidine formed with 2-naphthylamine and the dimethyl sulfate adduct can be cyclized with sodium methoxide to give benzo[f]quinoline (1-azaphenanthrene). [14]

Synthese von Benzo[f]chinolin mit 3-Dimethylaminoacrolein Synthese von 1-Azaphenanthren.svg
Synthese von Benzo[f]chinolin mit 3-Dimethylaminoacrolein

N-methylpyrrole forms the 3-(2-N-methylpyrrole)propenal with 3-dimethylaminoacrolein and POCl3 in 49% yield. [15]

Synthese von substituiertem Pyrrol Synthese von substituiertem Pyrrol.svg
Synthese von substituiertem Pyrrol

Similarly, the preparation of an intermediate for the cholesterol lowering drug fluvastatin via the reaction of a fluoroaryl-substituted N-isopropylindole with 3-dimethylaminoacrolein and POCl3 proceeds similarly. [16] [17]

Synthese einer Fluvastatin-Zwischenstufe mit 3-Dimethylaminoacrolein Fluvastatin-Zwischenstufe.svg
Synthese einer Fluvastatin-Zwischenstufe mit 3-Dimethylaminoacrolein

Occasionally, the iminium salt from the reaction of the Vilsmeier reagent and the vinyl ether (a precursor of 3-dimethylaminopropenal) is directly used for synthesis, e. g. for pyrazoles. [18]

Pyrazolsynthese mit 3-Dimethylaminoacrolein Synthese von Pyrazol.svg
Pyrazolsynthese mit 3-Dimethylaminoacrolein

When hydrazine hydrate is used, a pyrazole parent body is formed in 84% yield.

Reactions to vinamidinium salts

The reaction of 3-dimethylaminoacrolein with dimethylammonium tetrafluoroborate produces virtually quantitatively the vinamidinium salt 3-dimethylaminoacrolein dimethyliminium tetrafluoroborate, which crystallizes better as the perchlorate salt. The salt reacts also with cyclopentadiene in the presence of sodium amide in liquid ammonia to give the aminofulvene derivative. [19]

The same vinamidinium salt 1,1,5,5-tetramethyl-1,5-diazapentadienium chloride is also formed in the reaction of 3-dimethylaminoacrolein with dimethylamine hydrochloride in 70% yield. [20] The two-step reaction of dimethylamine and 70% perchloric acid with 3-dimethylaminoacrolein forms the same iminium salt (herein referred to as 1,3-bis(dimethylamino)trimethinium perchlorate). [21]

Synthese des 1,3-Bis(dimethylamino)trimethinium perchlorats Bildung von 1,1,5,5-Tetramethyl-1,5-diazapentadieniumperchlorat.svg
Synthese des 1,3-Bis(dimethylamino)trimethinium perchlorats

Lactones (e.g. γ-butyrolactone) or cyclic ketones (such as cyclopentanone) form with the vinylamidinium salt of 3-dimethylaminoacrolein and dimethylamine hydrochloride the corresponding dienaminones in 91% and 88% yield. [22]

Reaktion von 3-Dimethylaminoacrolein mit gamma-Butyrolacton Dienaminon mit gamma-Butyrolacton.svg
Reaktion von 3-Dimethylaminoacrolein mit gamma-Butyrolacton

The vinamidinium salt 1,1,5,5-tetramethyl-1,5-diazapentadienium chloride reacts with heterocycles bearing CH-acidic groups to form the corresponding dienamines which can be cyclized with bases to form fused heteroaromatics, such as carbazoles, benzofurans or benzothiophenes. [7]

Synthese von Carbazolen und Benzothiophenen Carbazol+Benzothiophen-Synthese.svg
Synthese von Carbazolen und Benzothiophenen

N-alkylpyrroles are obtained in good yield (86%) in the reaction of the vinamidinium salt with glycine esters, [23] substituted thiophenes (up to 87%) in the reaction with mercaptoacetic acid esters. [24]

Synthese von Thiophenen und Pyrrolen Thiophen+Pyrrol-Synthese.svg
Synthese von Thiophenen und Pyrrolen

The use of 3-dimethylaminoacrolein for the synthesis of 2-chloronicotinic acid (2-CNA) is of industrial interest as an important starting material for agrochemicals and pharmaceuticals. For this purpose, 3-dimethylaminoacrolein is reacted with cyanessigsäureethylester [25] to 2-chlornicotinsäureethylester or with cyanoacetic acid n-butyl ester to 2-Chlornicotinsäure-n-butyl ester [26] in a Knoevenagel reaction.

Synthese von 2-Chlornicotinsaure mit 3-Dimethylaminoacrolein 2-Chlornicotinsaure mit 3-Dimethylaminoacrolein.svg
Synthese von 2-Chlornicotinsäure mit 3-Dimethylaminoacrolein

The resulting esters of 2-chloropyridine carboxylic acid can be hydrolyzed smoothly to 2-chloronicotinic acid.

Other reactions

It reacts weakly alkaline and gives with iron(III) chloride a deep red color.

Related Research Articles

Dimethylformamide is an organic compound with the formula (CH3)2N−C(=O)H. Commonly abbreviated as DMF, this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

<span class="mw-page-title-main">Claisen rearrangement</span> Chemical reaction

The Claisen rearrangement is a powerful carbon–carbon bond-forming chemical reaction discovered by Rainer Ludwig Claisen. The heating of an allyl vinyl ether will initiate a [3,3]-sigmatropic rearrangement to give a γ,δ-unsaturated carbonyl, driven by exergonically favored carbonyl CO bond formation.

<span class="mw-page-title-main">Iminium</span> Polyatomic ion of the form >C=N< and charge +1

In organic chemistry, an iminium cation is a polyatomic ion with the general structure [R1R2C=NR3R4]+. They are common in synthetic chemistry and biology.

<span class="mw-page-title-main">Nicolaou Taxol total synthesis</span> Paper on taxol synthesis

The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.

Stephen aldehyde synthesis, a named reaction in chemistry, was invented by Henry Stephen (OBE/MBE). This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R-CN) using tin(II) chloride (SnCl2), hydrochloric acid (HCl) and quenching the resulting iminium salt ([R-CH=NH2]+Cl) with water (H2O). During the synthesis, ammonium chloride is also produced.

<span class="mw-page-title-main">Wender Taxol total synthesis</span>

Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.

<span class="mw-page-title-main">Mukaiyama Taxol total synthesis</span>

The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.

<span class="mw-page-title-main">Imidoyl chloride</span>

Imidoyl chlorides are organic compounds that contain the functional group RC(NR')Cl. A double bond exist between the R'N and the carbon centre. These compounds are analogues of acyl chloride. Imidoyl chlorides tend to be highly reactive and are more commonly found as intermediates in a wide variety of synthetic procedures. Such procedures include Gattermann aldehyde synthesis, Houben-Hoesch ketone synthesis, and the Beckmann rearrangement. Their chemistry is related to that of enamines and their tautomers when the α hydrogen is next to the C=N bond. Many chlorinated N-heterocycles are formally imidoyl chlorides, e.g. 2-chloropyridine, 2, 4, and 6-chloropyrimidines.

<span class="mw-page-title-main">1-Tetralone</span> Chemical compound

1-Tetralone is a bicyclic aromatic hydrocarbon and a ketone. In terms of its structure, it can also be regarded as benzo-fused cyclohexanone. It is a colorless oil with a faint odor. It is used as starting material for agricultural and pharmaceutical agents. The carbon skeleton of 1-tetralone is found in natural products such as Aristelegone A (4,7-dimethyl-6-methoxy-1-tetralone) from the family of Aristolochiaceae used in traditional Chinese medicine.

<span class="mw-page-title-main">Dimethylcarbamoyl chloride</span> Chemical compound

Dimethylcarbamoyl chloride (DMCC) is a reagent for transferring a dimethylcarbamoyl group to alcoholic or phenolic hydroxyl groups forming dimethyl carbamates, usually having pharmacological or pesticidal activities. Because of its high toxicity and its carcinogenic properties shown in animal experiments and presumably also in humans, dimethylcarbamoyl chloride can only be used under stringent safety precautions.

<span class="mw-page-title-main">Tetramethylurea</span> Chemical compound

Tetramethylurea is the organic compound with the formula (Me2N)2CO. It is a substituted urea. This colorless liquid is used as an aprotic-polar solvent, especially for aromatic compounds and is used e. g. for Grignard reagents.

<span class="mw-page-title-main">2-Ethyl-2-oxazoline</span> Chemical compound

2-Ethyl-2-oxazoline (EtOx) is an oxazoline which is used particularly as a monomer for the cationic ring-opening polymerization to poly(2-alkyloxazoline)s. This type of polymers are under investigation as readily water-soluble and biocompatible materials for biomedical applications.

<i>N</i>-Hydroxyphthalimide Chemical compound

N-Hydroxyphthalimide is the N-hydroxy derivative of phthalimide. The compound can be utilized as a catalyst for oxidation reactions, in particular for the selective oxidation with molecular oxygen under mild conditions.

<span class="mw-page-title-main">2-Methylglutaronitrile</span> Chemical compound

2-Methylglutaronitrile is the organic compound with the formula NCCH2CH2CH(CH3)CN. This dinitrile is obtained in the large-scale synthesis of adiponitrile. It is a colorless liquid with an unpleasant odor. It is the starting compound for the vitamin nicotinamide and for the diester dimethyl-2-methylglutarate and the ester amide methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate, which are promoted as green solvents. 2-Methylglutaronitrile is chiral but is mainly encountered as the racemate. It is also used to make Dytek A.

<i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-Tetramethylformamidinium chloride Chemical compound

N,N,N′,N′-Tetramethylformamidinium chloride is the simplest representative of quaternary formamidinium cations of the general formula [R2N−CH=NR2]+ with a chloride as a counterion in which all hydrogen atoms of the protonated formamidine [HC(=NH2)NH2]+ are replaced by methyl groups.

<span class="mw-page-title-main">Tris(dimethylamino)methane</span> Chemical compound

Tris(dimethylamino)methane (TDAM) is the simplest representative of the tris(dialkylamino)methanes of the general formula (R2N)3CH in which three of the four of methane's hydrogen atoms are replaced by dimethylamino groups (−N(CH3)2). Tris(dimethylamino)methane can be regarded as both an amine and an orthoamide.

1,4-butane sultone is a six-membered δ-sultone and the cyclic ester of 4-hydroxybutanesulfonic acid. As a sulfo-alkylating agent, 1,4-butanesultone is used to introduce the sulfobutyl group (–(CH2)4–SO3) into hydrophobic compounds possessing nucleophilic functional groups, for example hydroxy groups (as in the case of β-cyclodextrin) or amino groups (as in the case of polymethine dyes). In such, the sulfobutyl group is present as neutral sodium salt and considerably increases the water solubility of the derivatives.

Dimethylaminoethyl acrylate or DMAEA is an unsaturated carboxylic acid ester having a tertiary amino group. It is a colorless to yellowish, water-miscible liquid with a pungent, amine-like odor. DMAEA is an important acrylic monomer that gives basic properties to copolymers.

3,9-Divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane (DVTOSU) is a bicyclic organic molecule having a central quaternary carbon atom with which two alicyclic rings are linked, each comprising five atoms. DVTOSU is a diallyl acetal and the precursor for the isomeric ketene acetal monomer 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane (DETOSU) which is a building block for polyorthoesters.

<span class="mw-page-title-main">2-Cumaranone</span> Chemical compound

2-Cumaranone is a bicyclic heteroaromatic compound in which a six-membered benzene ring is annulated with a five-membered γ-butyrolactone ring. The 2(3H)-benzofuranone can also be considered as a lactone of (2-hydroxyphenyl)acetic acid. The benzofuranone basic structure is the basis of some natural products – such as rosmadial, which is isolatable from rosemary oil, and some substances with high pharmacological activity, such as griseofulvin and rifampicin. Furthermore, 2-cumaranone is utilized as a starting material for the preparation of chemiluminescent and fluorescent dyes, for synthetic pharmaceutical agents, like the antiarrhythmic drug dronedarone, and especially for the fungicide azoxystrobin.

References

  1. 1 2 3 "3-(Dimethylamino)acrolein 927-63-9 | TCI Deutschland GmbH". www.tcichemicals.com (in German). Retrieved 2018-01-14.
  2. 1 2 Sigma-Aldrich Co., product no. 305839.
  3. 1 2 3 4 DE 944852,F. Wille,"Verfahren zur Herstellung von Derivaten des 3-Amino-acroleins",published 1956-06-28, assigned to Badische Anilin- & Soda-Fabrik AG
  4. 1 2 3 DE 2424373,M. Decker, W. Schönleben, H. Toussaint, H. Hoffmann,"Verfahren zur Herstellung von Derivaten des Malondialdehyds",published 1975-12-11, assigned to BASF AG
  5. US 5780622,D. Dolphin, R. Boyle,"Methods of synthesizing 5,15-diarylbenzochlorine-7-one",published 1998-07-14, assigned to The University of British Columbia
  6. L.J. Niederhofer; J.S. Daniels; C.A. Rouzer; R.E. Greene; L.J. Marnett (2003), "Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells", J. Biol. Chem. , vol. 278, no. 33, pp. 31426–31433, doi: 10.1074/jbc.M212549200 , PMID   12775726
  7. 1 2 D. Lloyd; H. McNab (1976), "Vinamidine and Vinamidinium-Salze – Beispiele für stabilisierte Push-Pull-Alkene", Angew. Chem. , vol. 88, no. 15, pp. 496–504, doi:10.1002/ange.19760881503
  8. S. Makhseed; H.M.E. Hassaneen; M.H. Elnagdi (2007), "Studies with 2-(Arylhydrazono)aldehydes: Synthesis and Chemical Reactivity of Mesoxalaldehyde 2-Arylhydrazones and of Ethyl 2-Arylhydrazono-3-oxopropionates" (PDF), Z. Naturforsch. , vol. 62b, pp. 529–536
  9. P. Perlmutter (2001), "Propargyl Aldehyde", E-EROS Encyclopedia of Reagents for Organic Synthesis, doi:10.1002/047084289X.rp262m, ISBN   0471936235
  10. Z. Arnold; F. Sorm (1958), "Synthetische Reaktionen von Dimethylformamid. I. Allgemeine Synthese von β-Dialdehyden", Collect. Czech. Chem. Commun. (in German), vol. 23, no. 3, pp. 452–461, doi:10.1135/cccc19580452
  11. DE 19825200,D. Golsch, M. Keil, H. Isak,"Verfahren zur Herstellung von 3-Aminoacroleinderivaten",published 1999-11-18, assigned to BASF AG
  12. H. Bredereck; F. Effenberger; G. Simchen (1963), "Säureamid-Reaktionen, XXXII. Über Säureamid-Dialkylsulfat-Komplexe", Chem. Ber. (in German), vol. 96, no. 5, pp. 1350–1355, doi:10.1002/cber.19630960526
  13. H. Bredereck; F. Effenberger; D. Zeyfang (1965), "Synthese und Reaktionen vinyloger Amidacetale und Amidine", Angew. Chem. (in German), vol. 77, no. 5, p. 219, Bibcode:1965AngCh..77..219B, doi:10.1002/ange.19650770511
  14. C. Jutz; C. Jutz; R.M. Wagner (1972), "Die synchrone Sechs-Elektronen-Cyclisierung von Hexatrien-Systemen als neues Syntheseprinzip zur Darstellung von Aromaten und Heteroaromaten", Angew. Chem. (in German), vol. 84, no. 7, pp. 299–302, Bibcode:1972AngCh..84..299J, doi:10.1002/ange.19720840714
  15. F.W. Ulrich; E. Breitmeier (1983), "Vinyloge Vilsmeier-Formylierung mit 3-(N,N-Dimethylamino)-acroleinen", Synthesis (in German), vol. 1983, no. 8, pp. 641–645, doi:10.1055/s-1983-30457, S2CID   95436195
  16. D. Sriram; P. Yogeeswari (2010), Medicinal Chemistry (2nd ed.), Delhi: Pearson, p. 364, ISBN   978-81-317-3144-4
  17. J.T. Zacharia; T. Tanaka; M. Hagashi (2010), "Facile and highly enenatioselective synthesis of (+)- and (−)-fluvastatin and their analogues", J. Org. Chem. , vol. 75, no. 22, pp. 7514–7518, doi:10.1021/jo101542y, PMID   20939538
  18. EP 0731094,H.-J. Wroblowsky, R. Lantzsch,"Verfahren zur Herstellung von Pyrazolen",published 1996-09-11, assigned to Bayer AG
  19. Z. Arnold; J. Zemlicka (1960), "Reaktionen der Formamidinium-salze und ihrer Vinyloge mit Carbanionen", Collect. Czech. Chem. Commun. (in German), vol. 25, no. 5, pp. 1302–1307, doi:10.1135/cccc19601302
  20. V. Nair; C.S. Cooper (1981), "Chemistry of 1,5-diazapentadienium (vinamidinium) salts: alkylation reactions to multifunctional dienamines and dienaminones", J. Org. Chem. , vol. 46, no. 23, pp. 4759–4765, doi:10.1021/jo00336a027
  21. Z. Arnold; D. Dvorak; M. Havranek (1996), "Convenient preparation of 1,3-Bis(dimethylamino)trimethinium perchlorate, tetrafluoroborate and hexafluorophosphate", Collect. Czech. Chem. Commun., vol. 61, no. 11, pp. 1637–1641, doi:10.1135/cccc19961637
  22. V. Nair; C.S. Cooper (1980), "Selective alkylation reactions with vinamidinium salts", Tetrahedron Lett. , vol. 21, no. 33, pp. 3155–3158, doi:10.1016/S0040-4039(00)77433-8
  23. M.T. Wright; D.G. Carroll; T.M. Smith; S.Q. Smith (2010), "Synthesis of alkylpyrroles by use of a vinamidinium salt", Tetrahedron Lett. , vol. 51, no. 31, pp. 4150–4152, doi:10.1016/j.tetlet.2010.06.009
  24. R.T. Clemens; S.Q. Smith (2005), "The application of vinamidinium salts to the synthesis of 2,4-disubstituted thiophenes", Tetrahedron Lett. , vol. 46, no. 8, pp. 1319–1320, doi:10.1016/j.tetlet.2004.12.113
  25. EP 0372654,L. Schröder,"Preparation of 2-chloropyridine 3-carboxylic acid esters",published 1990-06-13, assigned to Shell Internationale Research Maatschappij B.V.
  26. WO 0007989,D. Golsch, M. Keil, H. Isak, H. Mayer,"Verfahren zur Herstellung von 2-Halogennikotinsäurederivaten und 2-Halogennikotinsäure-n-butylester als Zwischenprodukt",published 2000-02-17, assigned to BASF AG
  27. Randolph P. Thummel (2001). "(Z)-β-Aminoacrolein". e-EROS Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.ra087. ISBN   0471936235.