4-Chlorophenyl azide

Last updated
4-Chlorophenyl azide
4-chlorophenylazide.svg
4-chlorophenylazide.gif
Ball and Stick model of 4-chlorophenyl azide
Names
Preferred IUPAC name
1-Azido-4-chlorobenzene
Other names
4-chlorophenylazide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C6H4ClN3/c7-5-1-3-6(4-2-5)9-10-8/h1-4H Yes check.svgY
    Key: HZVGOEUGZJFTNN-UHFFFAOYSA-N Yes check.svgY
  • Clc1ccc(\N=[N+]=[N-])cc1
Properties
C6H4ClN3
Molar mass 153.569 g/mol
AppearanceBrown solid
Density 1.2634 g/cm3
Melting point 20 °C (68 °F; 293 K)
Boiling point 96 °C (205 °F; 369 K)
Insoluble in H2O; Soluble in diethyl ether
log P -3.71
Hazards
GHS labelling:
GHS-pictogram-skull.svg
Danger
H225, H302, H315
P264, P270, P301+P310, P321, P330, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
3
0
Safety data sheet (SDS) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

4-Chlorophenyl azide is an organic aryl azide compound with the chemical formula C6H4ClN3. The geometry between the nitrogen atoms in the azide functional group is approximately linear while the geometry between the nitrogen and the carbon of the benzene is trigonal planar.

Contents

Preparation

There are various methods to synthesize aryl azides. One such method would be to set use react aniline with sodium nitrite (NaNO2) and hydrazine hydrate in the presence of acetic acid. [2] This reaction will give moderate to good yield of the desired aryl azide. The best solvent for this reaction is dichloromethane. Dichloromethane is most effective because it is only slightly polar whereas highly polar solvents give significantly lower yields in this reaction. The reactants dissolve in a less polar solvent better and the reaction proceeds more fully towards completion. Two equivalents of sodium nitrite should be used with five equivalents of hydrazine hydrate to get a high yield of aryl azide. To form 4-chlorophenyl azide specifically, an aniline with a chloride group in the para position is used. The sodium nitrite reacts with aniline to form a diazonium salt that performs nucleophilic substitution with the azide ion formed by another reaction between sodium nitrite and hydrazine hydrate in an acidic medium. Such a reaction takes around 30 minutes to complete and gives around an 80% yield. This is an effective method of synthesis because of the short reaction time, easy work-up and inexpensive reagents. A picture of the preparation reaction is shown below:

Preparation of 4-chlorophenyl azide Preparation of 4-chlorophenyl azide.jpg
Preparation of 4-chlorophenyl azide

Another synthesis method that was researched was the Wong Synthesis which makes use of the reagents NaN3 and Tf2O. [3] The study of this synthesis method was very detailed because NaN3 is known to be explosive so careful attention to the synthesis procedures must be used.

Reactions

Azides are used in a variety of useful reactions and syntheses. In many different reactions they act as an intermediate step to convert a substituent group to an amine. The reason why using azides is useful in this process is because one of the products of reaction is nitrogen gas (N2). When a reaction produces gas there is a thermodynamically favorable push towards the products of the reaction. This relates to 4-chlorophenyl azide because this molecule is an intermediate during the formation of 4-chlorophenyl amine. In many instances lithium aluminium hydride (LAH) is used to reduce the azide functional group. An example of this reaction is the following:

Amine formation Reaction of reduction of Azide.jpg
Amine formation

Upon further reactions from the above synthesis, 4-chlorophenyl azide can also lead to the useful transformation of the iminium ion. The iminium ion is important in organic syntheses because it reacts similarly like a carbonyl compound. A partial positive charge builds up on the carbon that is doubly bound to the nitrogen which provides an excellent site for nucleophilic attack. A simple way to make the iminium ion is to react an amine with formaldehyde so water leaves the reaction and favors the iminium creation. An example of this reaction is seen below:

Amine formation Formation of the Iminium Ion.jpg
Amine formation

Aryl azides such as 4-chlorophenyl azide are important in click chemistry. 4-chlorophenyl azide is versatile in joining different molecules and is used in some reactions that are very simple and give high yields (characteristics of reactions of click chemistry). One of these reactions is between 4-chlorophenyl azide and alkynes to produce 1,2,3-triazoles. [4] An example of this reaction is shown below:

Triazole formation Formation of 1,2,3 triazoles with 4-chlorophenyl azideREDRAWN.svg
Triazole formation

Applications

The use of azides is very important in a variety of different applications in organic and biological chemistry. Azides are used in the research of drug applications, in materials science, and also all throughout biology. A majority of the research that is conducted on azides pertains to the catalyst that is needed to create the azide itself. Previously stated, LAH was used for the conversion of the amine to the azide, but this is not always the most environmentally beneficial way of forming the desired product. Research is conducted in many different biological environments to see if a certain catalyst will be recyclable and/or environmentally friendly.

One specific application of 4-chlorophenyl azide is in Friedel Crafts acylation and alkylation. The azide on 4-chlorophenyl azide acts as an electron withdrawing group since the azide has a partial positive charge that is withdrawing electrons from the ring. This means that the azide substituent acts as a meta director in Friedel Crafts acylation and alkylation. Consequently, the chloride on 4-chlorphenyl azide is a deactivating agent, but it also directs to the ortho/para positions on the aromatic ring. Due to the substituent effects on 4-chlorophenyl azide, acylation and alkylation would yield a major product that is newly substituted in the 3- and 5-positions on the aromatic ring. An example of this reaction is given below:

Amine formation Friedel Crafts and 4-Chlorophenyl Azide.jpg
Amine formation

Another application of 4-chlorophenyl azide is through the use of fungicides on plant pathogens. [5] It is important to control fungal pathogens on plants so that there is a high crop yield during the harvesting season. A multitude of compounds were tested on plant seeds to test the effectiveness of the fungicide. 4-Chlorophenyl Azide was a substituent bonded to the main molecular compound of which the entire research was conducted.

Structure and Bonding

4-chlorophenyl azide is an aryl azide. This is a benzene ring with an azide group and a chloride ion connected in the para position. The azide group is characterized by three nitrogen atoms connected together by two double bonds and is isoelectric with CO2. This forms a positive charge on the middle nitrogen and negative charges on the outside nitrogens. When connected in an aromatic ring, the extra charge on the outside is an important aspect of the molecules reactivity. This extra outside charge is able to stabilize the positive charge on the middle nitrogen and allow for the release of nitrogen gas, an important step in reactions that include 4-chlorophenyl azide. The size and structure of this molecule make it an important component in click chemistry. [6]

Related Research Articles

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

In chemistry, azide is a linear, polyatomic anion with the formula N−3 and structure N=N+=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

<span class="mw-page-title-main">Aniline</span> Organic compound (C₆H₅NH₂); simplest aromatic amine

Aniline is an organic compound with the formula C6H5NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical synthesis. Its main use is in the manufacture of precursors to polyurethane, dyes, and other industrial chemicals. Like most volatile amines, it has the odor of rotten fish. It ignites readily, burning with a smoky flame characteristic of aromatic compounds. It is toxic to humans.

<span class="mw-page-title-main">Nitrous acid</span> Chemical compound

Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

<span class="mw-page-title-main">Enamine</span> Class of chemical compounds

An enamine is an unsaturated compound derived by the condensation of an aldehyde or ketone with a secondary amine. Enamines are versatile intermediates.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

<span class="mw-page-title-main">Sodium azide</span> Chemical compound

Sodium azide is an inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in some car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is very acutely poisonous.

The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step. As such, there is no obvious retron for this reaction. The reaction was reported by Nikolai Kischner in 1911 and Ludwig Wolff in 1912.

In organic chemistry, Madelung synthesis is a chemical reaction that produces indoles by the intramolecular cyclization of N-phenylamides using strong base at high temperature. The Madelung synthesis was reported in 1912 by Walter Madelung, when he observed that 2-phenylindole was synthesized using N-benzoyl-o-toluidine and two equivalents of sodium ethoxide in a heated, airless reaction. Common reaction conditions include use of sodium or potassium alkoxide as base in hexane or tetrahydrofuran solvents, at temperatures ranging between 200–400 °C. A hydrolysis step is also required in the synthesis. The Madelung synthesis is important because it is one of few known reactions that produce indoles from a base-catalyzed thermal cyclization of N-acyl-o-toluidines.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide.

<span class="mw-page-title-main">Povarov reaction</span>

The Povarov reaction is an organic reaction described as a formal cycloaddition between an aromatic imine and an alkene. The imine in this organic reaction is a condensation reaction product from an aniline type compound and a benzaldehyde type compound. The alkene must be electron rich which means that functional groups attached to the alkene must be able to donate electrons. Such alkenes are enol ethers and enamines. The reaction product in the original Povarov reaction is a quinoline. Because the reactions can be carried out with the three components premixed in one reactor it is an example of a multi-component reaction.

<span class="mw-page-title-main">Petasis reaction</span>

The Petasis reaction is the multi-component reaction of an amine, a carbonyl, and a vinyl- or aryl-boronic acid to form substituted amines.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

The Stieglitz rearrangement is a rearrangement reaction in organic chemistry which is named after the American chemist Julius Stieglitz (1867–1937) and was first investigated by him and Paul Nicholas Leech in 1913. It describes the 1,2-rearrangement of trityl amine derivatives to triaryl imines. It is comparable to a Beckmann rearrangement which also involves a substitution at a nitrogen atom through a carbon to nitrogen shift. As an example, triaryl hydroxylamines can undergo a Stieglitz rearrangement by dehydration and the shift of a phenyl group after activation with phosphorus pentachloride to yield the respective triaryl imine, a Schiff base.

Electrophilic amination is a chemical process involving the formation of a carbon–nitrogen bond through the reaction of a nucleophilic carbanion with an electrophilic source of nitrogen.

Electrophilic aromatic substitution is an organic reaction in which an atom that is attached to an aromatic system is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, alkylation and acylation Friedel–Crafts reaction.

Rearrangements, especially those that can participate in cascade reactions, such as the aza-Cope rearrangements, are of high practical as well as conceptual importance in organic chemistry, due to their ability to quickly build structural complexity out of simple starting materials. The aza-Cope rearrangements are examples of heteroatom versions of the Cope rearrangement, which is a [3,3]-sigmatropic rearrangement that shifts single and double bonds between two allylic components. In accordance with the Woodward-Hoffman rules, thermal aza-Cope rearrangements proceed suprafacially. Aza-Cope rearrangements are generally classified by the position of the nitrogen in the molecule :

An organic azide is an organic compound that contains an azide functional group. Because of the hazards associated with their use, few azides are used commercially although they exhibit interesting reactivity for researchers. Low molecular weight azides are considered especially hazardous and are avoided. In the research laboratory, azides are precursors to amines. They are also popular for their participation in the "click reaction" between an azide and an alkyne and in Staudinger ligation. These two reactions are generally quite reliable, lending themselves to combinatorial chemistry.

References

  1. "4-chlorophenyl azide MSDS". Sigma Aldrich. Retrieved 11 April 2013.
  2. Siddiki, Afsar Ali; Takale, Balaram S.; Telvekar, Vikas N. (2013). "One pot synthesis of aromatic azide using sodium nitrite and hydrazine hydrate". Tetrahedron Letters. 54 (10): 1294–1297. doi:10.1016/j.tetlet.2012.12.112.
  3. Siddiki, Afsar Ali; Takale, Balaram S.; Telvekar, Vikas N. (2013). "One pot synthesis of aromatic azide using sodium nitrite and hydrazine hydrate". Tetrahedron Letters. 54 (10): 1294–1297. doi:10.1016/j.tetlet.2012.12.112.
  4. Da Silva, Fernando; Cavaleiro, José; Gomes, Ana; Martins, Priscila; Rocha, David; Neves, Maria; Ferreira, Vitor; Silva, Artur (2012). "Consecutive Tandem Cycloaddition between Nitriles and Azides; Synthesis of 5-Amino-1H-[1,2,3]-triazoles". Synlett. 24: 41–44. doi: 10.1055/s-0032-1317712 .
  5. "Espacenet - Bibliographic data".
  6. Hein, C. D.; Liu, X. M.; Wang, D. (2008). "Click Chemistry, a Powerful Tool for Pharmaceutical Sciences". Pharmaceutical Research. 25 (10): 2216–2230. doi:10.1007/s11095-008-9616-1. PMC   2562613 . PMID   18509602.