6PPD

Last updated
6PPD
6PPD skeletal.svg
Names
Preferred IUPAC name
N1-(4-Methylpentan-2-yl)-N4-phenylbenzene-1,4-diamine
Other names
N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine
  • N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine
  • 6PPD
  • HPPD
  • DMBPPD
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.011.222 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 212-344-0
PubChem CID
UNII
UN number 3077
  • InChI=1S/C18H24N2/c1-14(2)13-15(3)19-17-9-11-18(12-10-17)20-16-7-5-4-6-8-16/h4-12,14-15,19-20H,13H2,1-3H3
    Key: ZZMVLMVFYMGSMY-UHFFFAOYSA-N
  • CC(C)CC(C)NC1=CC=C(C=C1)NC2=CC=CC=C2
Properties
C18H24N2
Molar mass 268.404 g·mol−1
Appearancebrown or violet solid powder
Density 1.07
Melting point 45 °C (113 °F; 318 K)
Boiling point 260 °C (500 °F; 533 K)
log P 3.972
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H302, H317, H360, H410
P201, P202, P261, P264, P270, P272, P273, P280, P281, P301+P312, P302+P352, P308+P313, P321, P330, P333+P313, P363, P391, P405, P501
Flash point 204 °C (399 °F; 477 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

6PPD is an organic chemical widely used as stabilising additive (or antidegradant) in rubbers, such as NR, SBR and BR; all of which are common in vehicle tires. [1] Although it is an effective antioxidant it is primarily used because of its excellent antiozonant performance. It is one of several antiozonants based around p-phenylenediamine. [2]

Contents

Manufacturing

6PPD is prepared by reductive amination of methyl isobutyl ketone (which has six carbon atoms, hence the '6' in the name) with phenyl phenylenediamine (PPD). [3] This produces a racemic mixture.

Application

6PPD is a common rubber antiozonant, with major application in vehicle tires. It is mobile within the rubber and slowly migrates to the surface via blooming. Here it forms a "scavenger-protective film", reacting with the ozone more quickly than the ozone can react with the rubber. [4] This process forms aminoxyl radicals [5] [6] and was first thought to degrade only to the quinone diimine, but has since been understood to continue to oxidize to quinones, amongst other products. [7] Despite 6PPD being used in tires since the mid 1960s, its transformation to quinones was first recognized in 2020. [8] [9] The oxidized products are not effective antiozonants, meaning that 6PPD is a sacrificial agent.

6PPD ozone-oxidation overview.svg

The tendency of 6PPD to bloom towards the surface is protective because the surface film of antiozonant is replenished from reserves held within the rubber. However, this same property facilitates the transfer of 6PPD and its oxidation products into the environment as tire-wear debris. The 6PPD-quinone (6PPD-Q, CAS RN: 2754428-18-5) is of particular and increasing concern, due to its toxicity to fish.

Environmental impact

6PPD and 6PPD-quinone enter the environment through tire-wear and are sufficiently water-soluble to enter river systems via urban runoff. From here they become widely distributed (at decreasing levels) from urban rivers through to estuaries, coasts and finally deep-sea areas. [10]

6PPD-quinone is of environmental concern because it is toxic to coho salmon, killing them before they spawn in freshwater streams. [11] [12] [13]

A 2022 study also identified the toxic impact on species like brook trout and rainbow trout. [14] The published lethal concentrations are: [14] [15]

It is not known why the ozone-oxidised 6PPD is toxic to coho salmon, but has been suggested that the large differences in lethal dose between species may relate to their ability to rid themselves of 6PPD-Q via glucuronidation. [16] The Nisqually and nonprofit Long Live the Kings installed a mobile stormwater filter at a bridge in the Ohop Valley in 2022. The Washington Department of Ecology, Washington State University and the US Tire Manufacturer's Association are working on regulation and education. [17]

6PPD itself is deadly to rotifers, especially in combination with sodium chloride, though not at the level generally found in the runoff from road salt. [18] A small-scale biomonitoring study in South China has shown shown both 6PPD and 6PPDQ to be present in human urine; concentrations were low but the health implications are unknown. [19] A synthetic route to the 6PPD-quinone has been posted on ChemRxiv. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Chemical waste</span> Waste made from harmful chemicals

Chemical waste is any excess, unused, or unwanted chemical, especially those that cause damage to human health or the environment. Chemical waste may be classified as hazardous waste, non-hazardous waste, universal waste, or household hazardous waste. Hazardous waste is material that displays one or more of the following four characteristics: ignitability, corrosivity, reactivity, and toxicity. This information, along with chemical disposal requirements, is typically available on a chemical's Material Safety Data Sheet (MSDS). Radioactive waste requires special ways of handling and disposal due to its radioactive properties. Biohazardous waste, which may contain hazardous materials, is also handled differently.

<i>p</i>-Phenylenediamine Chemical compound

p-Phenylenediamine (PPD) is an organic compound with the formula C6H4(NH2)2. This derivative of aniline is a white solid, but samples can darken due to air oxidation. It is mainly used as a component of engineering polymers and composites like kevlar. It is also an ingredient in hair dyes and is occasionally used as a substitute for henna.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

Polymer stabilizers are chemical additives which may be added to polymeric materials, such as plastics and rubbers, to inhibit or retard their degradation. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour.

<span class="mw-page-title-main">Antiozonant</span> Class of chemical compounds

An antiozonant, also known as anti-ozonant, is an organic compound that prevents or retards damage caused by ozone. The most important antiozonants are those which prevent degradation of elastomers like rubber. A number of research projects study the application of another type of antiozonants to protect plants as well as salmonids that are affected by the chemicals.

<span class="mw-page-title-main">Per- and polyfluoroalkyl substances</span> Class of perfluorinated chemical compounds

Per- and polyfluoroalkyl substances (PFAS or PFASs) are a group of synthetic organofluorine chemical compounds that have multiple fluorine atoms attached to an alkyl chain. An early definition, from 2011, required that they contain at least one perfluoroalkyl moiety, –CnF2n+1–. Beginning in 2021, the Organisation for Economic Co-operation and Development (OECD) expanded their terminology, stating that "PFASs are defined as fluorinated substances that contain at least one fully fluorinated methyl or methylene carbon atom (without any H/Cl/Br/I atom attached to it), i.e., with a few noted exceptions, any chemical with at least a perfluorinated methyl group (–CF3) or a perfluorinated methylene group (–CF2–) is a PFAS."

<span class="mw-page-title-main">Genetically modified fish</span>

Genetically modified fish are organisms from the taxonomic clade which includes the classes Agnatha, Chondrichthyes and Osteichthyes whose genetic material (DNA) has been altered using genetic engineering techniques. In most cases, the aim is to introduce a new trait to the fish which does not occur naturally in the species, i.e. transgenesis.

<span class="mw-page-title-main">Microplastics</span> Extremely small fragments of plastic

Microplastics are fragments of any type of plastic less than 5 mm (0.20 in) in length, according to the U.S. National Oceanic and Atmospheric Administration (NOAA) and the European Chemicals Agency. They cause pollution by entering natural ecosystems from a variety of sources, including cosmetics, clothing, food packaging, and industrial processes.

<span class="mw-page-title-main">Ethylene diurea</span> Chemical compound

Ethylene diurea (EDU) is an organic compound with the formula (CH2NHCONH2)2. It is a white solid.

Pre-spawn mortality is a phenomenon where adult coho salmon, Oncorhynchus kisutch, die before spawning when returning to freshwater streams to spawn. It is also known as Urban Runoff Mortality Syndrome in more recent studies. This occurrence has been observed in much of the Puget Sound region of the Pacific Northwest. During fall migration, salmonids pass through urban watersheds which are contaminated with stormwater runoff. As the coho salmon pass through these waters, many will show symptoms of lethargy, loss of equilibrium and disorientation, and die within a few hours of showing these symptoms. These symptoms and behaviors are prevalent after rain events. Mortality often occurs before salmon have the opportunity to spawn, which is determined by cutting open female carcasses and observing for unfertilized eggs. Rates of pre-spawn mortality could impact the local salmon populations. Based on model projections, if rates continue, populations of coho salmon could become extinct within the next few decades.

<span class="mw-page-title-main">Diffusive gradients in thin films</span> Environmental chemistry technique

The diffusive gradients in thin films (DGT) technique is an environmental chemistry technique for the detection of elements and compounds in aqueous environments, including natural waters, sediments and soils. It is well suited to in situ detection of bioavailable toxic trace metal contaminants. The technique involves using a specially-designed passive sampler that houses a binding gel, diffusive gel and membrane filter. The element or compound passes through the membrane filter and diffusive gel and is assimilated by the binding gel in a rate-controlled manner. Post-deployment analysis of the binding gel can be used to determine the time-weighted-average bulk solution concentration of the element or compound via a simple equation.

<span class="mw-page-title-main">25-NB</span> Family of serotonergic psychedelics

The 25-NB (25x-NBx) series, sometimes alternatively referred to as the NBOMe compounds, is a family of serotonergic psychedelics. They are substituted phenethylamines and were derived from the 2C family. They act as selective agonists of the serotonin 5-HT2A receptor. The 25-NB family is unique relative to other classes of psychedelics in that they are, generally speaking, extremely potent and relatively selective for the 5-HT2A receptor. Use of NBOMe series drugs has caused many deaths and hospitalisations since the drugs popularisation in the 2010s. This is primarily due to their high potency, unpredictable pharmacokinetics, and sellers passing off the compounds in the series as LSD.

<span class="mw-page-title-main">Aminoxyl group</span>

Aminoxyl denotes a radical functional group with general structure R2N–O. It is commonly known as a nitroxyl radical or a nitroxide, however IUPAC discourages the use of these terms, as they erroneously suggest the presence of a nitro group. Aminoxyls are structurally related to hydroxylamines and N-oxoammonium salts, with which they can interconvert via a series of redox steps.

<i>N</i>-Isopropyl-<i>N</i>-phenyl-1,4-phenylenediamine Chemical compound

N-Isopropyl-N′-phenyl-1,4-phenylenediamine (often abbreviated IPPD) is an organic compound commonly used as an antiozonant in rubbers. Like other p-phenylenediamine-based antiozonants it works by virtue of its low ionization energy, which allows it to react with ozone faster than ozone will react with rubber. This reaction converts it to the corresponding aminoxyl radical (R2N–O•), with the ozone being converted to a hydroperoxyl radical (HOO•), these species can then be scavenged by other antioxidant polymer stabilizers.

Rubber pollution, similar to plastic pollution, occurs in various environments, and originates from a variety of sources, ranging from the food industry processing chain to tire wear. Synthetic and natural rubber dust and fragments now occur in food, airborne as particulates in air pollution, hidden in the earth as soil pollution, and in waterways, lakes and the sea.

<span class="mw-page-title-main">Elsie Sunderland</span> American scientist

Elsie M. Sunderland is a Canadian toxicologist and environmental scientist and the Gordon McKay Professor of Environmental Chemistry at Harvard University. She studies processes through which human activities increase and modify pollutants in natural ecosystems and living systems.

<span class="mw-page-title-main">Urs von Gunten</span> Swiss environmental chemist

Urs von Gunten is a Swiss environmental chemist and a professor at EPFL. He is known for his research in the fields of drinking water quality and water treatment.

<span class="mw-page-title-main">4-Aminodiphenylamine</span> Chemical compound

4-Aminodiphenylamine is a diphenylamine with an additional amine substituent. This dimer of aniline has various industrial uses, including as a hair dye ingredient, but also has raised concerns about toxicity by skin contact. It is also a starting material for the synthesis of 6PPD, an antiozonant for various rubber products. A colorimetric test for the quantitative analysis of nitrite, at levels below 100 nanograms per milliliter, is based on nitrite-catalyzed coupling of 4-aminodiphenylamine with N,N-dimethylaniline.

<span class="mw-page-title-main">Hexamethoxymethylmelamine</span> Chemical compound

Hexa(methoxymethyl)melamine (HMMM) is a hemiaminal ether commonly used as a crosslinking agent in the production of coatings and rubber items. It is produced via the reaction of melamine with formaldehyde and excess methanol, with the later also acting as a solvent for the reaction. It can be considered as a monomeric intermediate in the formation of melamine resin.

<span class="mw-page-title-main">Alain Manceau</span> French environmental mineralogist and biogeochemist

Alain Manceau, born September 19, 1955, is a French environmental mineralogist and biogeochemist. He is known for his research on the structure and reactivity of nanoparticulate iron and manganese oxides and clay minerals, on the crystal chemistry of strategic metals and rare-earth elements in marine sediments, and on the structural biogeochemistry of mercury in natural organic matter, animals, and humans.

References

  1. U.S. Tire Manufacturers Association (July 15, 2021). "Statement of Sarah E. Amick Vice President EHS&S and Senior Counsel U.S. Tire Manufacturers Association". Committee on Natural Resources Subcommittee on Oversight and Investigations United States House of Representatives.
  2. Krüger, R H; Boissiére, C; Klein-Hartwig, K; Kretzschmar, H-J (2005). "New phenylenediamine antiozonants for commodities based on natural and synthetic rubber". Food Addit Contam. 22 (10): 968–974. doi:10.1080/02652030500098177. PMID   16227180. S2CID   10548886.
  3. Hans-Wilhelm Engels et al., "Rubber, 4. Chemicals and Additives" in Ullmann's Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a23_365.pub2
  4. Lattimer, R. P.; Hooser, E. R.; Layer, R. W.; Rhee, C. K. (1 May 1983). "Mechanisms of Ozonation of N-(1,3-Dimethylbutyl)-N′-Phenyl-p-Phenylenediamine". Rubber Chemistry and Technology. 56 (2): 431–439. doi:10.5254/1.3538136.
  5. Cataldo, Franco; Faucette, Brad; Huang, Semone; Ebenezer, Warren (January 2015). "On the early reaction stages of ozone with N,N′-substituted p-phenylenediamines (6PPD, 77PD) and N,N′,N"-substituted-1,3,5-triazine "Durazone®": An electron spin resonance (ESR) and electronic absorption spectroscopy study". Polymer Degradation and Stability. 111: 223–231. doi:10.1016/j.polymdegradstab.2014.11.011.
  6. Cataldo, Franco (January 2018). "Early stages of p-phenylenediamine antiozonants reaction with ozone: Radical cation and nitroxyl radical formation". Polymer Degradation and Stability. 147: 132–141. doi:10.1016/j.polymdegradstab.2017.11.020.
  7. Seiwert, Bettina; Nihemaiti, Maolida; Troussier, Mareva; Weyrauch, Steffen; Reemtsma, Thorsten (April 2022). "Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater". Water Research. 212: 118122. Bibcode:2022WatRe.21218122S. doi: 10.1016/j.watres.2022.118122 . PMID   35101694. S2CID   246336931.
  8. Tian, Zhenyu; Zhao, Haoqi; Peter, Katherine T.; Gonzalez, Melissa; Wetzel, Jill; Wu, Christopher; Hu, Ximin; Prat, Jasmine; Mudrock, Emma; Hettinger, Rachel; Cortina, Allan E.; Biswas, Rajshree Ghosh; Kock, Flávio Vinicius Crizóstomo; Soong, Ronald; Jenne, Amy; Du, Bowen; Hou, Fan; He, Huan; Lundeen, Rachel; Gilbreath, Alicia; Sutton, Rebecca; Scholz, Nathaniel L.; Davis, Jay W.; Dodd, Michael C.; Simpson, Andre; McIntyre, Jenifer K. (3 December 2020), "A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon", Science , 371 (6525): 185–189, doi: 10.1126/science.abd6951 , PMID   33273063, S2CID   227281491, ... existing TWP [tire wear particle] loading, leaching, and toxicity assessments are clearly incomplete. ... Accordingly, the human health effects of such exposures merit evaluation. ... It is unlikely that coho salmon are uniquely sensitive ... ( in print 8 Jan 2021)
  9. Also an erratum to this paper published in Science vol. 375, No. 6582, 18 Feb 2022 doi : 10.1126/science.abo5785 reporting the updated toxicity estimates, as referenced below.
  10. Zeng, Lixi; Li, Yi; Sun, Yuxin; Liu, Liang-Ying; Shen, Mingjie; Du, Bibai (31 January 2023). "Widespread Occurrence and Transport of p -Phenylenediamines and Their Quinones in Sediments across Urban Rivers, Estuaries, Coasts, and Deep-Sea Regions". Environmental Science & Technology. 57 (6): 2393–2403. Bibcode:2023EnST...57.2393Z. doi:10.1021/acs.est.2c07652. PMID   36720114. S2CID   256458111.
  11. "Pollution from car tires is killing off salmon on US west coast, study finds". The Guardian . 3 December 2020.
  12. "Scientists solve mystery of mass coho salmon deaths. The killer? A chemical from car tires". Los Angeles Times . 3 December 2020.
  13. Johannessen, Cassandra; Helm, Paul; Lashuk, Brent; Yargeau, Viviane; Metcalfe, Chris D. (February 2022). "The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed". Archives of Environmental Contamination and Toxicology. 82 (2): 171–179. Bibcode:2022ArECT..82..171J. doi:10.1007/s00244-021-00878-4. PMC   8335451 . PMID   34347118.
  14. 1 2 Markus Brinkmann; David Montgomery; Summer Selinger; Justin G. P. Miller; Eric Stock (2022-03-02), "Acute Toxicity of the Tire Rubber-Derived Chemical 6PPD-quinone to Four Fishes of Commercial, Cultural, and Ecological Importance", Environmental Science & Technology Letters , vol. 9, no. 4, pp. 333–338, Bibcode:2022EnSTL...9..333B, doi:10.1021/acs.estlett.2c00050, S2CID   247336687
  15. Tian, Zhenyu; Gonzalez, Melissa; Rideout, Craig; Zhao, Hoaqi Nina; Hu, Ximin; Wetzel, Jill; Mudrock, Emma; James, C. Andrew; McIntyre, Jenifer K; Kolodziej, Edward P (11 January 2022), "6PPD-Quinone: Revised Toxicity Assessment and Quantification with a Commercial Standard", Environmental Science & Technology Letters , 9 (2): 140–146, Bibcode:2022EnSTL...9..140T, doi:10.1021/acs.estlett.1c00910, S2CID   245893533
  16. Montgomery, David; Ji, Xiaowen; Cantin, Jenna; Philibert, Danielle; Foster, Garrett; Selinger, Summer; Jain, Niteesh; Miller, Justin; McIntyre, Jenifer; de Jourdan, Benjamin; Wiseman, Steve; Hecker, Markus; Brinkmann, Markus (19 December 2023). "Interspecies Differences in 6PPD-Quinone Toxicity Across Seven Fish Species: Metabolite Identification and Semiquantification". Environmental Science & Technology. 57 (50): 21071–21079. Bibcode:2023EnST...5721071M. doi:10.1021/acs.est.3c06891. PMID   38048442. S2CID   265658590.
  17. Lena Beck (17 May 2022). "Your car is killing coho salmon". The Counter.
  18. Klauschies, Toni; Isanta-Navarro, Jana (2022-07-10). "The joint effects of salt and 6PPD contamination on a freshwater herbivore" (PDF). Science of the Total Environment. 829: 154675. Bibcode:2022ScTEn.829o4675K. doi:10.1016/j.scitotenv.2022.154675. PMID   35314241. S2CID   247577987 via Dynatrait.
  19. Du, Bibai; Liang, Bowen; Li, Yi; Shen, Mingjie; Liu, Liang-Ying; Zeng, Lixi (13 December 2022). "First Report on the Occurrence of N -(1,3-Dimethylbutyl)- N ′-phenyl- p -phenylenediamine (6PPD) and 6PPD-Quinone as Pervasive Pollutants in Human Urine from South China". Environmental Science & Technology Letters. 9 (12): 1056–1062. Bibcode:2022EnSTL...9.1056D. doi:10.1021/acs.estlett.2c00821. S2CID   253828438.
  20. Agua, Alon; Stanton, Ryan; Pirrung, Michael (2021-02-04). "Preparation of 2-((4-Methylpentan-2-Yl)amino)-5-(Phenylamino)cyclohexa-2,5-Diene-1,4-Dione (6PPD-Quinone), an Environmental Hazard for Salmon" (PDF). ChemRxiv . doi:10.26434/chemrxiv.13698985.v1. S2CID   234062284.