ALC-0315

Last updated
ALC-0315
ALC-0315 Struktur.svg
Names
Preferred IUPAC name
[(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate)
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C48H95NO5/c1-5-9-13-17-19-27-37-45(35-25-15-11-7-3)47(51)53-43-33-23-21-29-39-49(41-31-32-42-50)40-30-22-24-34-44-54-48(52)46(36-26-16-12-8-4)38-28-20-18-14-10-6-2/h45-46,50H,5-44H2,1-4H3
    Key: QGWBEETXHOVFQS-UHFFFAOYSA-N
  • CCCCCCCCC(CCCCCC)C(=O)OCCCCCCN(CCCCO)CCCCCCOC(=O)C(CCCCCC)CCCCCCCC
Properties
C48H95NO5
Molar mass 766.290 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

ALC-0315 ([(4-hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate)) is a synthetic lipid. A colorless oily material, it has attracted attention as a component of the SARS-CoV-2 vaccine, BNT162b2, from BioNTech and Pfizer. Specifically, it is one of four components that form lipid nanoparticles (LNPs), which encapsulate and protect the otherwise fragile mRNA that is the active ingredient in these drugs. [1] [2] These nanoparticles promote the uptake of therapeutically effective nucleic acids such as oligonucleotides or mRNA both in vitro and in vivo . [3] [4]

Contents

Below physiological pH, ALC-0315 becomes protonated at the nitrogen atom, yielding an ammonium cation that is attracted to the messenger RNA (mRNA), which is anionic. [5]

Synthesis

The preparation of ALC-0315 was first described in a patent application to lipid nanoparticles by Acuitas Therapeutics in 2017. [6] :137 The final step is a reductive amination reaction in which 4-aminobutanol is condensed with a lipid aldehyde, using sodium triacetoxyborohydride as the reducing agent to convert the intermediate imines to the amine of the product.

2 (C8H17)(C6H13)CHCO2(CH2)5CHO + H2N(CH2)4OH + 2 NaBH(O2CCH3)3 → ALC-0315

Use

ALC-0315 is one of the components of the BNT162b2 vaccine (0.43 mg per dose). [7] Its chemical properties as a tertiary amine mean that its cation can form an ionic bond to the messenger RNA which carries the genetic information for the SARS-CoV-2 spike protein formation in the human body. [5] Importantly, once the lipid nanoparticle which encapsulates the mRNA has been absorbed into antigen-presenting cells (a process called receptor-mediated endocytosis) the more acidic environment within the endosome fully protonates the ALC-0315 as a result the nanoparticle releases its payload of mRNA. [2] [8] In December 2021 there were objections raised against the use of ALC-0315 and ALC-0159 (and some other solid lipid nanoparticles) in humans by critics of mRNA-COVID-19 vaccines in Germany but the German pharmaceutical trade journal Pharmazeutische Zeitung (de) and the German investigative collective Correctiv refuted this and stated as one important reason that the European Medicines Agency has approved the vaccine and this includes all its ingredients. [9] [10]

See also

Pfizer–BioNTech COVID-19 vaccine nanoparticle ingredients

Related Research Articles

The Medicines and Healthcare products Regulatory Agency (MHRA) is an executive agency of the Department of Health and Social Care in the United Kingdom which is responsible for ensuring that medicines and medical devices work and are acceptably safe.

The Therapeutic Goods Administration (TGA) is the medicine and therapeutic regulatory agency of the Australian Government. As part of the Department of Health and Aged Care, the TGA regulates the quality, supply and advertising of medicines, pathology devices, medical devices, blood products and most other therapeutics. Any items that claim to have a therapeutic effect, are involved in the administration of medication, or are otherwise covered by the Therapeutic Goods Act 1989, the Therapeutic Goods Regulations 1990, or a ministerial order, must be approved by the TGA and registered in the Australian Register of Therapeutic Goods.

<span class="mw-page-title-main">Solid lipid nanoparticle</span> Novel drug delivery system

Lipid nanoparticles (LNPs) are nanoparticles composed of lipids. They are a novel pharmaceutical drug delivery system, and a novel pharmaceutical formulation. LNPs as a drug delivery vehicle were first approved in 2018 for the siRNA drug Onpattro. LNPs became more widely known in late 2020, as some COVID-19 vaccines that use RNA vaccine technology coat the fragile mRNA strands with PEGylated lipid nanoparticles as their delivery vehicle.

Arcturus Therapeutics is an American RNA medicines biotechnology company focused on the discovery, development and commercialization of therapeutics for rare diseases and infectious diseases. Arcturus has developed proprietary lipid nanoparticle RNA therapeutics for nucleic acid medicines including small interfering RNA (siRNA), messenger RNA (mRNA), gene editing RNA, DNA, antisense oligonucleotides, and microRNA.

mRNA vaccine Type of vaccine

An mRNAvaccine is a type of vaccine that uses a copy of a molecule called messenger RNA (mRNA) to produce an immune response. The vaccine delivers molecules of antigen-encoding mRNA into immune cells, which use the designed mRNA as a blueprint to build foreign protein that would normally be produced by a pathogen or by a cancer cell. These protein molecules stimulate an adaptive immune response that teaches the body to identify and destroy the corresponding pathogen or cancer cells. The mRNA is delivered by a co-formulation of the RNA encapsulated in lipid nanoparticles that protect the RNA strands and help their absorption into the cells.

<span class="mw-page-title-main">Moderna COVID-19 vaccine</span> RNA COVID-19 vaccine

The Moderna COVID‑19 vaccine, sold under the brand name Spikevax, is a COVID-19 vaccine developed by the American company Moderna, the United States National Institute of Allergy and Infectious Diseases (NIAID), and the Biomedical Advanced Research and Development Authority (BARDA). Depending on the jurisdiction, it is authorized for use in humans aged six months, twelve years, or eighteen years and older. It provides protection against COVID-19, which is caused by infection by the SARS-CoV-2 virus. It is designed to be administered in two or three 0.5-mL doses given by intramuscular injection at an interval of at least 28 days apart.

<span class="mw-page-title-main">Katalin Karikó</span> Hungarian-American biochemist (born 1955)

Katalin "Kati" Karikó is a Hungarian-American biochemist who specializes in ribonucleic acid (RNA)-mediated mechanisms, particularly in vitro-transcribed messenger RNA (mRNA) for protein replacement therapy. Karikó laid the scientific groundwork for mRNA vaccines, overcoming major obstacles and skepticism in the scientific community. Karikó received the Nobel Prize in Physiology or Medicine in 2023 for her work, along with American immunologist Drew Weissman.

<span class="mw-page-title-main">BioNTech</span> German biotechnology company

BioNTech SE is a German biotechnology company based in Mainz that develops and manufactures active immunotherapies for patient-specific approaches to the treatment of diseases. It develops pharmaceutical candidates based on messenger ribonucleic acid (mRNA) for use as individualized cancer immunotherapies, as vaccines against infectious diseases and as protein replacement therapies for rare diseases, and also engineered cell therapy, novel antibodies and small molecule immunomodulators as treatment options for cancer.

<span class="mw-page-title-main">Uğur Şahin</span> German oncologist and immunologist (born 1965)

Uğur Şahin is a German oncologist and immunologist. He is the founder and CEO of BioNTech, which developed one of the major vaccines against COVID-19. His main fields of research are cancer research and immunology.

<span class="mw-page-title-main">Pfizer–BioNTech COVID-19 vaccine</span> Type of vaccine for humans

The Pfizer–BioNTech COVID-19 vaccine, sold under the brand name Comirnaty, is an mRNA-based COVID-19 vaccine developed by the German biotechnology company BioNTech. For its development, BioNTech collaborated with the American company Pfizer to carry out clinical trials, logistics, and manufacturing. It is authorized for use in humans to provide protection against COVID-19, caused by infection with the SARS-CoV-2 virus. The vaccine is given by intramuscular injection. It is composed of nucleoside-modified mRNA (modRNA) encoding a mutated form of the full-length spike protein of SARS-CoV-2, which is encapsulated in lipid nanoparticles. Initial advice indicated that vaccination required two doses given 21 days apart, but the interval was later extended to up to 42 days in the US, and up to four months in Canada.

A nucleoside-modified messenger RNA (modRNA) is a synthetic messenger RNA (mRNA) in which some nucleosides are replaced by other naturally modified nucleosides or by synthetic nucleoside analogues. modRNA is used to induce the production of a desired protein in certain cells. An important application is the development of mRNA vaccines, of which the first authorized were COVID-19 vaccines.

Distearoylphosphatidylcholine is a phosphatidylcholine, a kind of phospholipid. It is a natural constituent of cell membranes, eg. soybean phosphatidylcholines are mostly different 18-carbon phosphatidylcholines, and their hydrogenation results in 85% DSPC. It can be used to prepare lipid nanoparticles which are used in mRNA vaccines, In particular, it forms part of the drug delivery system for the Moderna and Pfizer COVID-19 vaccines.

ALC-0159 is a PEG/lipid conjugate, specifically, it is the N,N-dimyristylamide of 2-hydroxyacetic acid, O-pegylated to a PEG chain mass of about 2 kilodaltons. It is a non-ionic surfactant by its nature. It has been deployed in the Pfizer-BioNTech SARS-CoV-2 mRNA vaccine that contains the active ingredient tozinameran.

<span class="mw-page-title-main">Drew Weissman</span> American physician and immunologist (born 1959)

Drew Weissman is an American physician and immunologist known for his contributions to RNA biology. Weissman is the inaugural Roberts Family Professor in Vaccine Research, director of the Penn Institute for RNA Innovation, and professor of medicine at the Perelman School of Medicine at the University of Pennsylvania (Penn).

SM-102 is a synthetic amino lipid which is used in combination with other lipids to form lipid nanoparticles. These are used for the delivery of mRNA-based vaccines, and in particular SM-102 forms part of the drug delivery system for the Moderna COVID-19 vaccine.

<span class="mw-page-title-main">History of COVID-19 vaccine development</span> Scientific work to develop a vaccine for COVID-19

SARS-CoV-2, the virus that causes COVID-19, was isolated in late 2019. Its genetic sequence was published on 11 January 2020, triggering an urgent international response to prepare for an outbreak and hasten the development of a preventive COVID-19 vaccine. Since 2020, vaccine development has been expedited via unprecedented collaboration in the multinational pharmaceutical industry and between governments. By June 2020, tens of billions of dollars were invested by corporations, governments, international health organizations, and university research groups to develop dozens of vaccine candidates and prepare for global vaccination programs to immunize against COVID‑19 infection. According to the Coalition for Epidemic Preparedness Innovations (CEPI), the geographic distribution of COVID‑19 vaccine development shows North American entities to have about 40% of the activity, compared to 30% in Asia and Australia, 26% in Europe, and a few projects in South America and Africa.

<span class="mw-page-title-main">N1-Methylpseudouridine</span> Chemical compound

N1-Methylpseudouridine is a natural archaeal tRNA component, component of mammalian ribosomal RNA, and "hypermodified" pyrimidine nucleoside used in biochemistry and molecular biology for in vitro transcription and is found in the SARS-CoV-2 mRNA vaccines tozinameran (Pfizer–BioNTech) and elasomeran (Moderna).

DMG-PEG 2000 is a synthetic lipid formed by the PEGylation of myristoyl diglyceride. It is used to manufacture lipid nanoparticles that are used in mRNA vaccines, and in particular forms part of the drug delivery system for the Moderna COVID-19 vaccine.

<span class="mw-page-title-main">Intracellular delivery</span> Scientific research area

Intracellular delivery is the process of introducing external materials into living cells. Materials that are delivered into cells include nucleic acids, proteins, peptides, impermeable small molecules, synthetic nanomaterials, organelles, and micron-scale tracers, devices and objects. Such molecules and materials can be used to investigate cellular behavior, engineer cell operations or correct a pathological function.

<span class="mw-page-title-main">Acuitas Therapeutics</span> Canadian biotechnology company

Acuitas Therapeutics Inc. is a Canadian biotechnology company based in Vancouver, British Columbia. The company was established in February 2009 to specialize in the development of delivery systems for nucleic acid therapeutics based on lipid nanoparticle (LNP) technology, a key component of the mRNA vaccines deployed for COVID-19.

References

  1. Michael McCoy (February 12, 2021). "Lipids, the unsung COVID-19 vaccine component, Get Investment". Chemical and Engineering News.
  2. 1 2 Ryan Cross (2021). "Without These Lipid Shells, There Would Be No mRNA Vaccines for COVID-19". Chemical & Engineering News: 16–19. doi:10.47287/cen-09908-feature1. S2CID   233842401.
  3. Sahin, Ugur; Karikó, Katalin; Türeci, Özlem (2014). "MRNA-based therapeutics — developing a new class of drugs". Nature Reviews Drug Discovery. 13 (10): 759–780. doi: 10.1038/nrd4278 . PMID   25233993. S2CID   27454546.
  4. Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew (2018). "MRNA vaccines — a new era in vaccinology". Nature Reviews Drug Discovery. 17 (4): 261–279. doi:10.1038/nrd.2017.243. PMC   5906799 . PMID   29326426.
  5. 1 2 Medicines and Healthcare products Regulatory Agency (11 December 2020). "Public Assessment Report: Authorisation for Temporary Supply COVID-19 mRNA Vaccine BNT162b2" (PDF).
  6. WOapplication 2018081480,Ansell S.; Barbosa C.& Du X.et al.,"Lipid nanoparticle formulations",published 2018-05-03, assigned to Acuitas Therapeutics, Inc.
  7. Schoenmaker, Linde; Witzigmann, Dominik; Kulkarni, Jayesh A.; Verbeke, Rein; Kersten, Gideon; Jiskoot, Wim; Crommelin, Daan J. A. (2021-05-15). "mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability". International Journal of Pharmaceutics. 601: 120586. doi: 10.1016/j.ijpharm.2021.120586 . ISSN   0378-5173. PMC   8032477 . PMID   33839230.
  8. Chaudhary, Namit; Weissman, Drew; Whitehead, Kathryn A. (2021). "MRNA vaccines for infectious diseases: Principles, delivery and clinical translation". Nature Reviews Drug Discovery. 20 (11): 817–838. doi:10.1038/s41573-021-00283-5. PMC   8386155 . PMID   34433919.
  9. "Absurde Diskussion um Lipide ALC-0315 und ALC-0159". 18 January 2022. Retrieved 23 January 2022. Erstens stimmt es nicht, dass die Zusatzstoffe unerlaubt sind. Denn Comirnaty ist zugelassen und damit sind auch alle darin enthaltenen Hilfsstoffe zugelassen.[Firstly, it is not true that the additives are illegal. Because Comirnaty is approved and therefore all the additives contained in it are also approved.]
  10. "Faktencheck: Nein, der Biontech-Impfstoff enthält keine Inhaltsstoffe, die nicht für Menschen zugelassen sind". 23 December 2021. Retrieved 23 January 2022. Doch anders als behauptet, sind sie nicht gesundheitsschädlich, die EMA hat die Impfung und somit auch deren Bestandteile zugelassen. Dass die Bestandteile bei der Zulassung der mRNA-Impfstoffe geprüft wurden, bestätigte uns auch das Paul-Ehrlich-Institut (PEI) auf Anfrage.[But contrary to what is claimed, they are not harmful to health, the EMA has approved the vaccination and thus also its components. On request, the Paul Ehrlich Institute (PEI) also confirmed that the components were tested when the mRNA vaccines were approved.]