Achromatic telescope

Last updated
For an achromatic doublet, visible wavelengths have approximately the same focal length. Lens6b-en.svg
For an achromatic doublet, visible wavelengths have approximately the same focal length.
Achromatic telescope by Hooke, 18th century. Achromatic telescope-CnAM 1843-IMG 6422-white.jpg
Achromatic telescope by Hooke, 18th century.

The achromatic telescope is a refracting telescope that uses an achromatic lens to correct for chromatic aberration.

Contents

How it works

When an image passes through a lens, the light is refracted at different angles for different wavelengths. This produces focal lengths that are dependent on the color of the light. So, for example, at the focal plane an image may be focused at the red end of the spectrum, but blurred at the blue end. This effect is particularly noticeable the further an object lies from the central axis of the telescope. The image of a star can appear blue on one side and orange on the other. Early refracting telescopes with non-achromatic objectives were constructed with very long focal lengths to mask the chromatic aberration. An Achromatic telescope uses an achromatic lens to correct for this. An achromatic lens is a compound lenses made with two types of glass with different dispersion. One element, a concave lens made out of Flint glass, has relatively high dispersion, while the other, a convex element made of Crown glass, has a lower dispersion. The crown lens is usually placed at the front due to the higher susceptibility of flint glass to atmospheric attack (exception: Steinheil doublet). The lens elements are mounted next to each other and shaped so that the chromatic aberration of one is counterbalanced by the chromatic aberration of the other, while the positive power of the crown lens element is not quite equaled by the negative power of the flint lens element. Together they form a weak positive lens that will bring two different wavelengths of light to a common focus.

Achromatic telescope designs

Littrow doublet

Uses an equiconvex crown with R1=R2, and a flint with R3=-R2 and a flat back. Can produce a ghost image between R2 and R3 because they have the same radii. May also produce a ghost image between the flat R4 and rear of the telescope tube.

Fraunhofer

R1 is set greater than R2, and R2 is set close to, but not equal, R3. R4 is usually greater than R3.

Clark doublet

Uses an equiconvex crown with R1=R2, and a flint with R3~R2 and R4>>R3. R3 is set slightly shorter than R2 to create a focus mismatch between R2 and R3, thereby reducing ghosting between the crown and flint.

Oil spaced doublet

The use of oil between the crown and flint eliminates the effect of ghosting, particularly where R2=R3. It can also increase light transmission slightly and reduce the impact of errors in R2 and R3.

Steinheil doublet

Is a flint-first doublet in need of stronger curvature than, e.g., a Fraunhofer doublet [1]

See also

Related Research Articles

Abbe number Material dispersion property

In optics and lens design, the Abbe number, also known as the V-number or constringence of a transparent material, is an approximate measure of the material's dispersion, with high values of V indicating low dispersion. It is named after Ernst Abbe (1840–1905), the German physicist who defined it. The term V-number should not be confused with the normalized frequency in fibers.

Optical aberration Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

Lens Optical device which transmits and refracts light

A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic, and are ground and polished or molded to a desired shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called lenses, such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

Chromatic aberration Failure of a lens to focus all colors on the same point

In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wavelength of light. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image.

Achromatic lens Lens that is designed to limit the effects of chromatic and spherical aberration

An achromatic lens or achromat is a lens that is designed to limit the effects of chromatic and spherical aberration. Achromatic lenses are corrected to bring two wavelengths into focus on the same plane.

Flint glass

Flint glass is optical glass that has relatively high refractive index and low Abbe number. Flint glasses are arbitrarily defined as having an Abbe number of 50 to 55 or less. The currently known flint glasses have refractive indices ranging between 1.45 and 2.00. A concave lens of flint glass is commonly combined with a convex lens of crown glass to produce an achromatic doublet lens because of their compensating optical properties, which reduces chromatic aberration.

Refracting telescope Type of optical telescope

A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spyglasses and astronomical telescopes but is also used for long-focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes, the refracting telescope has been superseded by the reflecting telescope, which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.

Objective (optics)

In optical engineering, the objective is the optical element that gathers light from the object being observed and focuses the light rays to produce a real image. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses.

John Dollond English optician

John Dollond FRS was an English optician, known for his successful optics business and his patenting and commercialization of achromatic doublets.

Apochromat

An apochromat, or apochromatic lens (apo), is a photographic or other lens that has better correction of chromatic and spherical aberration than the much more common achromat lenses.

Eyepiece Type of lens attached to a variety of optical devices such as telescopes and microscopes

An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through the device. The objective lens or mirror collects light and brings it to focus creating an image. The eyepiece is placed near the focal point of the objective to magnify this image. The amount of magnification depends on the focal length of the eyepiece.

Doublet (lens)

In optics, a doublet is a type of lens made up of two simple lenses paired together. Such an arrangement allows more optical surfaces, thicknesses, and formulations, especially as the space between lenses may be considered an "element". With additional degrees of freedom, optical designers have more latitude to correct more optical aberrations more thoroughly.

Large format lens

Large format lenses are photographic optics that provide an image circle large enough to cover the large format film or plates used in large format cameras.

Crown glass (optics) Type of glass

Crown glass is a type of optical glass used in lenses and other optical components. It has relatively low refractive index (≈1.52) and low dispersion. Crown glass is produced from alkali-lime silicates containing approximately 10% potassium oxide and is one of the earliest low dispersion glasses.

A non-achromatic objective is an objective lens which is not corrected for chromatic aberration. In telescopes they can a be pre-18th century simple single element objective lenses which were used before the invention of doublet achromatic lenses. They can also be specialty monochromatic lenses used in modern research telescopes and other instruments.

Chester Moore Hall was a British lawyer and inventor who produced the first achromatic lenses in 1729 or 1733 . He used the achromatic lens to build the first achromatic telescope, a refracting telescope free from chromatic aberration.

The design of photographic lenses for use in still or cine cameras is intended to produce a lens that yields the most acceptable rendition of the subject being photographed within a range of constraints that include cost, weight and materials. For many other optical devices such as telescopes, microscopes and theodolites where the visual image is observed but often not recorded the design can often be significantly simpler than is the case in a camera where every image is captured on film or image sensor and can be subject to detailed scrutiny at a later stage. Photographic lenses also include those used in enlargers and projectors.

Low-dispersion glass is a type of glass with a reduction in chromatic aberration. Crown glass is an example of a relatively inexpensive low-dispersion glass.

A flat lens is a lens whose flat shape allows it to provide distortion-free imaging, potentially with arbitrarily-large apertures. The term is also used to refer to other lenses that provide a negative index of refraction. Flat lenses require a refractive index close to −1 over a broad angular range. In recent years, flat lenses based on metasurfaces were also demonstrated.

References

  1. Kidger, M.J. (2002) Fundamental Optical Design. SPIE Press, Bellingham, WA, pp. 174ff