Adaptive capacity

Last updated

Adaptive capacity relates to the capacity of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences. [1] In the context of ecosystems, adaptive capacity is determined by genetic diversity of species, biodiversity of particular ecosystems in specific landscapes or biome regions. In the context of coupled socio-ecological social systems, adaptive capacity is commonly associated with the following characteristics: Firstly, the ability of institutions and networks to learn, and store knowledge and experience. Secondly, the creative flexibility in decision making, transitioning and problem solving. And thirdly, the existence of power structures that are responsive and consider the needs of all stakeholders.

Contents

In the context of climate change adaptation, adaptive capacity depends on the inter-relationship of social, political, economic, technological and institutional factors operating at a variety of scales. [2] Some of these are generic, and others are exposure-specific.

Benefits

Adaptive capacity confers resilience to perturbation, giving ecological and human social systems the ability to reconfigure themselves with minimum loss of function. In ecological systems, this resilience shows as net primary productivity and maintenance of biomass and biodiversity, and the stability of hydrological cycles. In human social systems it is demonstrated by the stability of social relations, the maintenance of social capital and economic prosperity. [3]

Building adaptive capacity is particular important in the context of climate change, where it refers to a latent capacity - in terms of resources and assets - from which adaptations can be made as required depending on future circumstances. Since future climate is likely to be different from the present climate, developing adaptive capacity is a prerequisite for the adaptation that can reduce the potential negative effects of exposure to climate change. In climate change, adaptive capacity, along with hazard, exposure and vulnerability, is a key component that contributes to risk, or the potential for harm or impact. [4]

Characteristics

Adaptive capacity can be enhanced in a number of different ways. A report by the Overseas Development Institute introduces the local adaptive capacity framework (LAC), featuring five core characteristics of adaptive capacity. [5] These include:

Many development interventions - such as social protection programmes and efforts to promote social safety nets - can play important roles in promoting aspects of adaptive capacity.

Relationship between adaptive capacity, states and strategies

Adaptive capacity is associated with r and K selection strategies in ecology and with a movement from explosive positive feedback to sustainable negative feedback loops in social systems and technologies. [7] [8] The Resilience Alliance shows how the logistic curve of the r phase positive feedback, becoming replaced by the K negative feedback strategy is an important part of adaptive capacity. [9] The r strategy is associated with situations of low complexity, high resilience, and growing potential. K strategies are associated with situations of high complexity, high potential and high resilience, but if the perturbations exceed certain limits, adaptive capacity may be exceeded and the system collapses into another so-called Omega state, of low potential, low complexity and low resilience. [10]

In the context of climate change

Adaptive capacity in the context of climate change covers human, natural, or managed systems. It looks at how they respond to both climate variability and extremes. It covers the ability of a system to adjust to climate change to moderate potential damages, to take advantage of opportunities, or to cope with consequences. [11] Adaptive capacity is not the same as adaptation itself. [12] Adaptive capacity is the ability to reduce the likelihood of negative impacts of climate-related hazards. [13] It does this through the ability to design and implement effective adaptation strategies, or to react to evolving hazards and stresses. Societies that can respond to change quickly and successfully have a high adaptive capacity. [14] Conversely, high adaptive capacity does not necessarily lead to successful adaptation action. It does not necessarily succeed in goals of equity and enhancing well-being. [15] :164 For example, adaptive capacity in Western Europe is generally considered to be high. Experts have documented the risks of warmer winters increasing the range of livestock diseases. But many parts of Europe were still badly affected by outbreaks of bluetongue virus in livestock in 2007. [16]

Common enablers of adaptive capacity

An enabler, also known as a promoter or driver, represents a set of factors and conditions which can help to build and develop resilience. [17] In a 2001 IPCC report focusing on impacts, adaptation, and vulnerability, six factors were identified as promoters of adaptive capacity. These characteristics contribute to the development and strengthening of adaptive capacity. [18] For instance, a stable and prosperous economy is crucial, as it enables better management of the costs associated with adaptation. [18] Generally, developed and wealthier nations are more prepared to face the impacts of climate change. [19] Access to technology at various levels (local, regional, and national) and in all sectors is essential for staying informed about resource distribution, land use, and extraction practices. [18] Additionally, clearly delineating roles and responsibilities for executing adaptation strategies is important at national, regional, and local levels. Discussion forums and consultations are established to disseminate climate information, ensuring clear communication and collaboration. [18] Social institutions aim to distribute resources equitably, recognizing that power imbalances can hinder adaptive capacity. [18] It's vital to protect existing systems with high adaptive capacity, such as traditional societies, from potential compromises resulting from modern development trajectories.

Common barriers of adaptive capacity

A barrier is an obstacle surmounted through collective efforts, creative management, mindset shifts, and adjustments in resource distribution, land uses, and institutions. [20] Barriers are often confused with limits however, the distinguishing feature between the two is that limits cannot be overcome. [21] Barriers are crucial to consider when assessing the level of adaptive capacity within a group, community, and organization, as they block or hinder adaptation actions. [22] Various types of barriers including historical, political, financial, and natural can be identified. They can be either internal or external and can block or hinder the implementation of an adaptation action and consequently lower adaptive capacity. [22] An external barrier is a factor that falls outside an organization/community/individual's control. For example, a common external barrier is the absence of land available for individuals or enterprises to relocate while faced with a major climatic event such as flooding or wildfires. [23] An internal barrier is typically affected by an organization/community/individual beliefs and perceptions concerning climate change. For example, a common internal barrier is people's reluctance to relocate from flood-prone regions (owing to their livelihood dependence), the costs of land or property, or insufficient awareness regarding the potential flooding risks amid projected climate alterations. [23]

Common organizational barriers include a disconnect between government recommendations/policies and concrete actions made by actors and organizations. [24] [25] Scholars point to other significant barriers that may impede adaptation action, like the lack of resources, financial incentives for long-term planning, and a lack of knowledge related to climate change adaptation. [26] Another common barrier is skepticism regarding the severity and urgency of climate impacts. Local knowledge of technical, climate-adapted solutions is instrumental for organizational adaptation, but opportunities to harness this knowledge can be missed due to skeptical beliefs. [26]

See also

Related Research Articles

A vulnerability assessment is the process of identifying, quantifying, and prioritizing the vulnerabilities in a system. Examples of systems for which vulnerability assessments are performed include, but are not limited to, information technology systems, energy supply systems, water supply systems, transportation systems, and communication systems. Such assessments may be conducted on behalf of a range of different organizations, from small businesses up to large regional infrastructures. Vulnerability from the perspective of disaster management means assessing the threats from potential hazards to the population and to infrastructure. It may be conducted in the political, social, economic or environmental fields.

<span class="mw-page-title-main">Effects of climate change</span>

Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an overall warming trend, changes to precipitation patterns, and more extreme weather. As the climate changes it impacts the natural environment with effects such as more intense forest fires, thawing permafrost, and desertification. These changes can profoundly impact ecosystems and societies, and can become irreversible once tipping points are crossed.

Economic analysis of climate change is about using economic tools and models to calculate the magnitude and distribution of damages caused by climate change. It can also give guidance for the best policies for mitigation and adaptation to climate change from an economic perspective. There are many economic models and frameworks. For example, in a cost–benefit analysis, the trade offs between climate change impacts, adaptation, and mitigation are made explicit. For this kind of analysis, integrated assessment models (IAMs) are useful. Those models link main features of society and economy with the biosphere and atmosphere into one modelling framework. The total economic impacts from climate change are difficult to estimate. In general, they increase the more the global surface temperature increases. Economic analysis also looks at the economics of climate change mitigation.

<span class="mw-page-title-main">Climate change adaptation</span> Process of adjusting to effects of climate change

Climate change adaptation is the process of adjusting to the effects of climate change. These can be both current or expected impacts. Adaptation aims to moderate or avoid harm for people, and is usually done alongside climate change mitigation. It also aims to exploit opportunities. Humans may also intervene to help adjustment for natural systems. There are many adaptation strategies or options. They can help manage impacts and risks to people and nature. The four types of adaptation actions are infrastructural, institutional, behavioural and nature-based options.

<span class="mw-page-title-main">Disaster risk reduction</span> Preventing new and reducing existing disaster risk factors

Disaster risk reduction (DRR) is an approach for planning and taking steps to make disasters less likely to happen, and less damaging when they do happen. DRR aims to make communities stronger and better prepared to handle disasters. When DRR is successful, it decreases the vulnerability of communities because it mitigates the effects of disasters. This means DRR can reduce the severity and number of risky events. Since climate change can increase climate hazards, DRR and climate change adaptation are often looked at together in development efforts.

Climate risk is the potential for problems for societies or ecosystems from the impacts of climate change. The assessment of climate risk is based on formal analysis of the consequences, likelihoods and responses to these impacts. Societal constraints can also shape adaptation options. There are different values and preferences around risk, resulting in differences of risk perception.

<span class="mw-page-title-main">Ecological resilience</span> Capacity of ecosystems to resist and recover from change

In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.

<span class="mw-page-title-main">Potsdam Institute for Climate Impact Research</span> German research institute

The Potsdam Institute for Climate Impact Research is a German government-funded research institute addressing crucial scientific questions in the fields of global change, climate impacts, and sustainable development. Ranked among the top environmental think tanks worldwide, it is one of the leading research institutions and part of a global network of scientific and academic institutions working on questions of global environmental change. It is a member of the Leibniz Association, whose institutions perform research on subjects of high relevance to society.

In political ecology and environmental policy, climate governance is the diplomacy, mechanisms and response measures "aimed at steering social systems towards preventing, mitigating or adapting to the risks posed by climate change". A definitive interpretation is complicated by the wide range of political and social science traditions that are engaged in conceiving and analysing climate governance at different levels and across different arenas. In academia, climate governance has become the concern of geographers, anthropologists, economists and business studies scholars.

<span class="mw-page-title-main">Climate change and poverty</span> Correlation of disproportionate impacts of climate on impoverished people

Climate change and poverty are deeply intertwined because climate change disproportionally affects poor people in low-income communities and developing countries around the world. The impoverished have a higher chance of experiencing the ill-effects of climate change due to the increased exposure and vulnerability. Vulnerability represents the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change including climate variability and extremes.

<span class="mw-page-title-main">Urban resilience</span> Ability of a city to function after a crisis

Urban resilience has conventionally been defined as the "measurable ability of any urban system, with its inhabitants, to maintain continuity through all shocks and stresses, while positively adapting and transforming towards sustainability".

<span class="mw-page-title-main">Climate change in Africa</span> Emissions, impacts and responses of the African continent related to climate change

Climate change in Africa is an increasingly serious threat as Africa is among the most vulnerable continents to the effects of climate change. Some sources even classify Africa as "the most vulnerable continent on Earth". Climate change and climate variability will likely reduce agricultural production, food security and water security. As a result, there will be negative consequences on people's lives and sustainable development in Africa.

Vulnerability refers to "the quality or state of being exposed to the possibility of being attacked or harmed, either physically or emotionally." The understanding of social and environmental vulnerability, as a methodological approach, involves the analysis of the risks and assets of disadvantaged groups, such as the elderly. The approach of vulnerability in itself brings great expectations of social policy and gerontological planning. Types of vulnerability include social, cognitive, environmental, emotional or military.

<span class="mw-page-title-main">Resilience (engineering and construction)</span> Infrastructure design able to absorb damage without suffering complete failure

In the fields of engineering and construction, resilience is the ability to absorb or avoid damage without suffering complete failure and is an objective of design, maintenance and restoration for buildings and infrastructure, as well as communities. A more comprehensive definition is that it is the ability to respond, absorb, and adapt to, as well as recover in a disruptive event. A resilient structure/system/community is expected to be able to resist to an extreme event with minimal damages and functionality disruptions during the event; after the event, it should be able to rapidly recovery its functionality similar to or even better than the pre-event level.

Climate resilience is a concept to describe how well people or ecosystems are prepared to bounce back from certain climate hazard events. The formal definition of the term is the "capacity of social, economic and ecosystems to cope with a hazardous event or trend or disturbance". For example, climate resilience can be the ability to recover from climate-related shocks such as floods and droughts. Methods of coping include suitable responses to maintain relevant functions of societies and ecosystems. To increase climate resilience means one has to reduce the climate vulnerability of people and countries. Efforts to increase climate resilience include a range of social, economic, technological, and political strategies. They have to be implemented at all scales of society, from local community action all the way to global treaties.

Community resilience is the sustained ability of a community to use available resources to respond to, withstand, and recover from adverse situations. This allows for the adaptation and growth of a community after disaster strikes. Communities that are resilient are able to minimize any disaster, making the return to normal life as effortless as possible. By implementing a community resilience plan, a community can come together and overcome any disaster, while rebuilding physically and economically.

<span class="mw-page-title-main">Nature-based solutions</span> Sustainable management and use of nature for tackling socio-environmental challenges

Nature-based solutions is the sustainable management and use of natural features and processes to tackle socio-environmental issues. These issues include for example climate change, water security, food security, preservation of biodiversity, and disaster risk reduction. Through the use of NBS healthy, resilient, and diverse ecosystems can provide solutions for the benefit of both societies and overall biodiversity. The 2019 UN Climate Action Summit highlighted nature-based solutions as an effective method to combat climate change. For example, NBS in the context of climate action can include natural flood management, restoring natural coastal defences, providing local cooling, restoring natural fire regimes.

<span class="mw-page-title-main">Climate change in Greenland</span>

Climate change in Greenland is affecting the livelihood of the Greenlandic population. Geographically Greenland is situated between the Arctic and the Atlantic Ocean, with two thirds of the island being north of the Arctic Circle. Since the middle of the 20th century, the Arctic has been warming at about twice the global rate. Rising temperatures put increasing pressure on certain plant and tree species and contribute to Greenland's melting ice sheet. This affects and changes the livelihood of the Greenlandic population, particularly the Greenlandic Inuit, which make up to 80 percent of the total population. Besides the decline of fish stocks, the country's landscape is changing: the melting ice reveals minerals, oil and gas. This has attracted interest from local and foreign investors for potential resource extraction. As new industries are accompanied by new job opportunities and potential wealth, lifestyles are changing. Greenland is in transition, in terms of biophysical as well as cultural and social conditions.

<span class="mw-page-title-main">Sustainable Development Goal 13</span> UN goal to combat climate change

Sustainable Development Goal 13 is to limit and adapt to climate change. It is one of 17 Sustainable Development Goals established by the United Nations General Assembly in 2015. The official mission statement of this goal is to "Take urgent action to combat climate change and its impacts". SDG 13 and SDG 7 on clean energy are closely related and complementary.

<span class="mw-page-title-main">Climate change vulnerability</span> Assessment of relative vulnerability to climate change and its effects

Climate change vulnerability is a concept that describes how strongly people or ecosystems are likely to be affected by climate change. Its formal definition is the "propensity or predisposition to be adversely affected" by climate change. It can apply to humans and also to natural systems. Issues around the capacity to cope and adapt are also part of this concept. Vulnerability is a component of climate risk. Vulnerability differs within communities and also across societies, regions, and countries. It can increase or decrease over time.

References

  1. IPCC (2014). "Glossary" (PDF). Intergovernmental Panel on Climate Change.
  2. Vincent, Katharine (2007). "Uncertainty in adaptive capacity and the importance of scale". Global Environmental Change. 17 (1): 12–24. doi:10.1016/j.gloenvcha.2006.11.009.
  3. Gunderson, Lance (2000-11-01). "Ecological Resilience–In Theory and Application". Annual Review of Ecology and Systematics. 31: 425–439. doi:10.1146/annurev.ecolsys.31.1.425.
  4. "AR5 Synthesis Report: Climate Change 2014 — IPCC" . Retrieved 2019-12-18.
  5. Jones, Lindsey; Ludi, Eva; Jeans, Helen; Barihaihi, Margaret (2019-01-02). "Revisiting the Local Adaptive Capacity framework: learning from the implementation of a research and programming framework in Africa" (PDF). Climate and Development. 11 (1): 3–13. Bibcode:2019CliDe..11....3J. doi:10.1080/17565529.2017.1374237. ISSN   1756-5529. S2CID   151242240.
  6. Jones, Ludi and Levine, Lindsey, Eva and Simon (December 2010). "Towards a characterisation of adaptive capacity: a framework for analysing adaptive capacity at the local level" (PDF). ODI: 8. Archived from the original (PDF) on 2020-01-28. Retrieved 2019-10-02 via Overseas Development Institute.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Taylor, Douglas R.; Aarssen, Lonnie W.; Loehle, Craig (1990). "On the Relationship between r/K Selection and Environmental Carrying Capacity: A New Habitat Templet for Plant Life History Strategies". Oikos. 58 (2): 239–250. Bibcode:1990Oikos..58..239T. doi:10.2307/3545432. ISSN   0030-1299. JSTOR   3545432.
  8. Oizumi, Ryo; Kuniya, Toshikazu; Enatsu, Yoichi (2016-06-23). "Reconsideration of r/K Selection Theory Using Stochastic Control Theory and Nonlinear Structured Population Models". PLOS ONE. 11 (6): e0157715. Bibcode:2016PLoSO..1157715O. doi: 10.1371/journal.pone.0157715 . ISSN   1932-6203. PMC   4919082 . PMID   27336169.
  9. Gunderson, L.H. and C.S. Holling, editors. Panarchy: Understanding Transformations in Human and Natural Systems. Island Press, Washington.
  10. Allen, Craig; Holling, C.s (2010-09-01). "Novelty, Adaptive Capacity, and Resilience". Ecology and Society. 15 (3). doi: 10.5751/ES-03720-150324 .
  11. IPCC, 2022: Annex II: Glossary [Möller, V., R. van Diemen, J.B.R. Matthews, C. Méndez, S. Semenov, J.S. Fuglestvedt, A. Reisinger (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2897–2930, doi:10.1017/9781009325844.029
  12. Gupta, Joyeeta; Termeer, Catrien; Klostermann, Judith; Meijerink, Sander; van den Brink, Margo; Jong, Pieter; Nooteboom, Sibout; Bergsma, Emmy (1 October 2010). "The Adaptive Capacity Wheel: a method to assess the inherent characteristics of institutions to enable the adaptive capacity of society". Environmental Science & Policy. 13 (6): 459–471. doi:10.1016/j.envsci.2010.05.006. hdl: 1765/20798 . ISSN   1462-9011.
  13. Brooks, N and Adger, WN (2005) Assessing and enhancing adaptive capacity. In: Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures. Cambridge University Press, Cambridge, pp. 165–181.
  14. Smit, Barry; Wandel, Johanna (2006). "Adaptation, adaptive capacity and vulnerability" (PDF). Global Environmental Change. 16 (3): 282–292. doi:10.1016/j.gloenvcha.2006.03.008. S2CID   14884089. Archived from the original (PDF) on 24 June 2010. Retrieved 29 August 2010.
  15. Ara Begum, R., R. Lempert, E. Ali, T.A. Benjaminsen, T. Bernauer, W. Cramer, X. Cui, K. Mach, G. Nagy, N.C. Stenseth, R. Sukumar, and P. Wester, 2022: Chapter 1: Point of Departure and Key Concepts. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 121–196, doi:10.1017/9781009325844.003
  16. Juhola, Sirkku; Peltonen, Lasse; Niemi, Petteri (2013), "Assessing Adaptive Capacity to Climate Change in European Regions", European Climate Vulnerabilities and Adaptation, John Wiley & Sons, Ltd, pp. 113–130, doi:10.1002/9781118474822.ch7, ISBN   9781118474822
  17. Guillaume, Simonet; Alexia, Leseur (2019). "Barriers and drivers to adaptation to climate change—a field study of ten French local authorities". Climatic Change. 155 (4): [ page needed ]. doi:10.1007/s10584-019-02484-9. ISSN   0165-0009.
  18. 1 2 3 4 5 "IPCC - Intergovernmental Panel on Climate Change". archive.ipcc.ch. Retrieved 2024-04-08.
  19. "Poor and Vulnerable Countries Need Support to Adapt to Climate Change". IMF. 2022-03-23. Retrieved 2024-04-13.
  20. Moser, Susanne C.; Ekstrom, Julia A. (2010). "A framework to diagnose barriers to climate change adaptation". Proceedings of the National Academy of Sciences. 107 (51): 22026–22031. Bibcode:2010PNAS..10722026M. doi: 10.1073/pnas.1007887107 . PMC   3009757 . PMID   21135232. S2CID   7635031.
  21. Piggott-McKellar, A. E.; McNamara, K. E.; Nunn, P. D.; Watson, J. E. M. (2019-06-05). "What are the barriers to successful community-based climate change adaptation? A review of grey literature". Local Environment. 24 (4): 374–390. Bibcode:2019LoEnv..24..374P. doi:10.1080/13549839.2019.1580688.
  22. 1 2 Eisenack, Klaus; Moser, Susanne C.; Hoffmann, Esther; Klein, Richard J. T.; Oberlack, Christoph; Pechan, Anna; Rotter, Maja; Termeer, Catrien J. A. M. (October 2014). "Explaining and overcoming barriers to climate change adaptation". Nature Climate Change. 4 (10): 867–872. Bibcode:2014NatCC...4..867E. doi:10.1038/nclimate2350. ISSN   1758-6798.
  23. 1 2 Brooks ('first'), Adger ('second'), Nick ('first'), Neil ('second') (2004). "Assessing and Enhancing Adaptive Capacity": 165–181 via Research Gate.{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  24. Barr, Stephanie L.; Lemieux, Christopher J. (2021-09-21). "Assessing organizational readiness to adapt to climate change in a regional protected areas context: lessons learned from Canada". Mitigation and Adaptation Strategies for Global Change. 26 (8): 34. Bibcode:2021MASGC..26...34B. doi:10.1007/s11027-021-09972-3. ISSN   1573-1596.
  25. Ford, James D.; King, Diana (2015-04-01). "A framework for examining adaptation readiness". Mitigation and Adaptation Strategies for Global Change. 20 (4): 505–526. Bibcode:2015MASGC..20..505F. doi:10.1007/s11027-013-9505-8. ISSN   1573-1596.
  26. 1 2 Greenwood, Lisa L.; Lin, Vicki; Abraham, Yewande S.; Schneider, Jennifer L. (January 2023). "Partnering for Climate Resilience: Exploring the Maturity of Private-Sector Efforts in the Great Lakes Region". Sustainability. 15 (19): 14105. doi: 10.3390/su151914105 . ISSN   2071-1050.