Additive inverse

Last updated

In mathematics, the additive inverse of a number a (sometimes called the opposite of a) [1] is the number that, when added to a, yields zero. The operation taking a number to its additive inverse is known as sign change [2] or negation. [3] For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.

Contents

The additive inverse of a is denoted by unary minus: a (see also § Relation to subtraction below). [4] For example, the additive inverse of 7 is −7, because 7 + (−7) = 0, and the additive inverse of −0.3 is 0.3, because −0.3 + 0.3 = 0.

Similarly, the additive inverse of ab is −(ab) which can be simplified to ba. The additive inverse of 2x − 3 is 3 − 2x, because 2x − 3 + 3 − 2x = 0. [5]

The additive inverse is defined as its inverse element under the binary operation of addition (see also § Formal definition below), which allows a broad generalization to mathematical objects other than numbers. As for any inverse operation, double additive inverse has no net effect: −(−x) = x.

These complex numbers, two of eight values of [?]1, are mutually opposite NegativeI2Root.svg
These complex numbers, two of eight values of 1, are mutually opposite

Common examples

For a number (and more generally in any ring), the additive inverse can be calculated using multiplication by −1; that is, n = −1 × n. Examples of rings of numbers are integers, rational numbers, real numbers, and complex numbers.

Relation to subtraction

Additive inverse is closely related to subtraction, which can be viewed as an addition of the opposite:

ab  =  a + (−b).

Conversely, additive inverse can be thought of as subtraction from zero:

a = 0 − a.

Hence, unary minus sign notation can be seen as a shorthand for subtraction (with the "0" symbol omitted), although in a correct typography, there should be no space after unary "−".

Other properties

In addition to the identities listed above, negation has the following algebraic properties:

Formal definition

The notation + is usually reserved for commutative binary operations (operations where x + y = y + x for all x, y). If such an operation admits an identity element o (such that x + o ( = o + x ) = x for all x), then this element is unique (o = o + o = o). For a given x, if there exists x such that x + x ( = x + x ) = o, then x is called an additive inverse of x.

If + is associative, i.e., (x + y) + z = x + (y + z) for all x, y, z, then an additive inverse is unique. To see this, let x and x″ each be additive inverses of x; then

x = x + o = x + (x + x″) = (x + x) + x″ = o + x″ = x″.

For example, since addition of real numbers is associative, each real number has a unique additive inverse.

Other examples

All the following examples are in fact abelian groups:

Non-examples

Natural numbers, cardinal numbers and ordinal numbers do not have additive inverses within their respective sets. Thus one can say, for example, that natural numbers do have additive inverses, but because these additive inverses are not themselves natural numbers, the set of natural numbers is not closed under taking additive inverses.

See also

Notes and references

  1. Tussy, Alan; Gustafson, R. (2012), Elementary Algebra (5th ed.), Cengage Learning, p. 40, ISBN   9781133710790 .
  2. Brase, Corrinne Pellillo; Brase, Charles Henry (1976). Basic Algebra for College Students. Houghton Mifflin. p. 54. ISBN   978-0-395-20656-0. ...to take the additive inverse of the member, we change the sign of the number.
  3. The term "negation" bears a reference to negative numbers, which can be misleading, because the additive inverse of a negative number is positive.
  4. Weisstein, Eric W. "Additive Inverse". mathworld.wolfram.com. Retrieved 2020-08-27.
  5. "Additive Inverse". www.learnalberta.ca. Retrieved 2020-08-27.

Related Research Articles

<span class="mw-page-title-main">Arithmetic</span> Elementary branch of mathematics

Arithmetic is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today.

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

<span class="mw-page-title-main">Quasigroup</span>

In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

<span class="mw-page-title-main">Addition</span> Arithmetic operation

Addition is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or sum of those values combined. The example in the adjacent image shows two columns of three apples and two apples each, totaling at five apples. This observation is equivalent to the mathematical expression "3 + 2 = 5".

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

<span class="mw-page-title-main">Negative number</span> Real number that is strictly less than zero

In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, −(−3) = 3 because the opposite of an opposite is the original value.

<span class="mw-page-title-main">Complex conjugate</span> Fundamental operation on complex numbers

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or .

<span class="mw-page-title-main">Multiplicative inverse</span> Number which when multiplied by x equals 1

In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

<span class="mw-page-title-main">Square (algebra)</span> Product of a number by itself

In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations x^2 (caret) or x**2 may be used in place of x2. The adjective which corresponds to squaring is quadratic.

In mathematics, and more specifically in abstract algebra, a rng is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng is meant to suggest that it is a ring without i, that is, without the requirement for an identity element.

In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.

<span class="mw-page-title-main">Operation (mathematics)</span> Addition, multiplication, division, ...

In mathematics, an operation is a function which takes zero or more input values to a well-defined output value. The number of operands is the arity of the operation.

In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x. One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

In mathematics, there are many types of algebraic structures which are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.

<span class="mw-page-title-main">Sign (mathematics)</span> Number property of being positive or negative

In mathematics, the sign of a real number is its property of being either positive, negative, or zero.

GF(2) is the finite field of two elements. Notations Z2 and may be encountered although they can be confused with the notation of 2-adic integers.

Algebra is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics.