Alfred L. Wilds

Last updated

Alfred Lawrence Wilds (1 March 1915 - 4 July 2002) was a professor emeritus of chemistry at the University of Wisconsin in Madison.

He graduated at the University of Michigan in 1937 and earned a Ph.D. in 1939. [1]

His doctoral research was done under the guidance of Professor Werner E. Bachmann at Michigan at a time (the mid-1930s) when modern organic chemistry and synthesis was just starting to emerge. His thesis work is hailed even today as a major and revolutionary break with the past. The total synthesis of the steroidal sex hormone equilenin, published in the Journal of the American Chemical Society in 1940, was the first successful total synthesis of a complex natural product. [2] In the context of the time, it was not a widely disseminated view that chemical structures of this degree of structural and stereochemical complexity could indeed be made from common starting chemicals. The Vitalism theory still distorted many people's views as to the relationship between "ordinary" chemicals and such esoterica as animal-isolated sex hormones. So the "Bachmann, Cole and Wilds" paper is widely recognized as inaugurating the modern era of chemical synthesis of complex medicinally important structures. 70+ years later, synthesis of such complex targets as HIV protease inhibitors are as a result of the equilenin synthesis by Al Wilds.

He was married to Carolyn Simcock Wilds. [1]

Related Research Articles

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, focusing on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

<span class="mw-page-title-main">Robert Burns Woodward</span> American chemist (1917–1979)

Robert Burns Woodward was an American organic chemist. He is considered by many to be the most preeminent synthetic organic chemist of the twentieth century, having made many key contributions to the subject, especially in the synthesis of complex natural products and the determination of their molecular structure. He also worked closely with Roald Hoffmann on theoretical studies of chemical reactions. He was awarded the Nobel Prize in Chemistry in 1965.

<span class="mw-page-title-main">Leopold Ružička</span> Croatian-Swiss chemist (1887–1976)

Leopold Ružička was a Croatian-Swiss scientist and joint winner of the 1939 Nobel Prize in Chemistry "for his work on polymethylenes and higher terpenes" "including the first chemical synthesis of male sex hormones." He worked most of his life in Switzerland, and received eight doctorates honoris causa in science, medicine, and law; seven prizes and medals; and twenty-four honorary memberships in chemical, biochemical, and other scientific societies.

Werner Emmanuel Bachmann was an American chemist. Bachmann was born in Detroit, Michigan where he studied chemistry and chemical engineering at Wayne State University and later at the University of Michigan in Ann Arbor nearby. He completed his doctorate under Moses Gomberg and spent the rest of his academic career at the University of Michigan.

Total synthesis is the complete chemical synthesis of a complex molecule, often a natural product, from simple, commercially-available precursors. It usually refers to a process not involving the aid of biological processes, which distinguishes it from semisynthesis. Syntheses may sometimes conclude at a precursor with further known synthetic pathways to a target molecule, in which case it is known as a formal synthesis. Total synthesis target molecules can be natural products, medicinally-important active ingredients, known intermediates, or molecules of theoretical interest. Total synthesis targets can also be organometallic or inorganic, though these are rarely encountered. Total synthesis projects often require a wide diversity of reactions and reagents, and subsequently requires broad chemical knowledge and training to be successful.

Choh Hao Li was a Chinese-born American biochemist who discovered, in 1966, that human pituitary growth hormone (somatotropin) consists of a chain of 256 amino acids. In 1970 he succeeded in synthesizing this hormone, the largest protein molecule synthesized up to that time.

<span class="mw-page-title-main">Alfred Werner</span> Swiss chemist (1866–1919)

Alfred Werner was a Swiss chemist who was a student at ETH Zurich and a professor at the University of Zurich. He won the Nobel Prize in Chemistry in 1913 for proposing the octahedral configuration of transition metal complexes. Werner developed the basis for modern coordination chemistry. He was the first inorganic chemist to win the Nobel Prize, and the only one prior to 1973.

Arthur John Birch, AC CMG FRS FAA was an Australian organic chemist.

<span class="mw-page-title-main">Moses Gomberg</span> American chemist (1866–1947)

Moses Gomberg was a chemistry professor at the University of Michigan. He was elected to the National Academy of Sciences and the American Philosophical Society, and served as president of the American Chemical Society.

<span class="mw-page-title-main">Equilenin</span> Chemical compound

Equilenin, also known as 6,8-didehydroestrone, as well as estra-1,3,5(10),6,8-pentaen-3-ol-17-one, is a naturally occurring steroidal estrogen obtained from the urine of pregnant mares. It is used as one of the components in conjugated estrogens. It was the first complex natural product to be fully synthesized, in work reported by 1940 by Bachmann and Wilds.

The Willard Gibbs Award, presented by the Chicago Section of the American Chemical Society, was established in 1910 by William A. Converse (1862–1940), a former Chairman and Secretary of the Chicago Section of the society and named for Professor Josiah Willard Gibbs (1839–1903) of Yale University. Gibbs, whose formulation of the Phase Rule founded a new science, is considered by many to be the only American-born scientist whose discoveries are as fundamental in nature as those of Newton and Galileo.

Lewis Norman Mander,, FAA, FRS was a New Zealand-born Australian organic chemist. He has widely explored the synthesis and chemistry of the gibberellin class of diterpenes over a 20-year period at the Australian National University (ANU). In particular, he studied the effect of these hormones on stem growth and on the reasons why plant undergo bolting during plant development. The July 2004 edition of the Australian Journal of Chemistry was dedicated to Mander on the occasion of his 65th birthday. He retired in 2002 but remained active at the ANU until 2014. In 2018 Mander was made a Companion in the General Division in the Order of Australia which "...is awarded for eminent achievement and merit of the highest degree in service to Australia or humanity at large". In an interview he gave after winning his award, Mander said that his goal was to improve the efficiency of extracting food from plants with the possibility of reducing food shortages in the future.

<span class="mw-page-title-main">Albert Eschenmoser</span> Swiss organic chemist (1925–2023)

Albert Jakob Eschenmoser (5 August 1925 – 14 July 2023) was a Swiss organic chemist, best known for his work on the synthesis of complex heterocyclic natural compounds, most notably vitamin B12. In addition to his significant contributions to the field of organic synthesis, Eschenmoser pioneered work in the Origins of Life (OoL) field with work on the synthetic pathways of artificial nucleic acids. Before retiring in 2009, Eschenmoser held tenured teaching positions at the ETH Zurich and The Skaggs Institute for Chemical Biology at The Scripps Research Institute in La Jolla, California as well as visiting professorships at the University of Chicago, Cambridge University, and Harvard.

<span class="mw-page-title-main">John C. Sheehan</span> American chemist (1915–1992)

John Clark Sheehan was an American organic chemist whose work on synthetic penicillin led to tailor-made forms of the drug. After nine years of hard work at the Massachusetts Institute of Technology (M.I.T.), he became the first to discover a practical method for synthesizing penicillin V. While achieving total synthesis, Sheehan also produced an intermediate compound, 6-aminopenicillanic acid, which turned out to be the foundation of hundreds of kinds of synthetic penicillin. Dr. Sheehan's research on synthetic penicillin paved the way for the development of customized forms of the lifesaving antibiotic that target specific bacteria. Over the four decades he worked at M.I.T., Sheehan came to hold over 30 patents, including the invention of ampicillin, a commonly used semi-synthetic penicillin that is taken orally rather than by injection. His research covered not only penicillin, but also peptides, other antibiotics, alkaloids, and steroids.

<span class="mw-page-title-main">Johann Georg Anton Geuther</span> German chemist (1833–1889)

Johann Georg Anton Geuther was a German chemist. His work in organic and inorganic chemistry influenced the development of coordination chemistry. Geuther spent most of his academic career at the University of Jena where he discovered ethyl acetoacetate, a key compound for chemical synthesis and for the discovery of tautomerism.

<span class="mw-page-title-main">Edith Humphrey</span> British chemist

Edith Ellen Humphrey was a British inorganic chemist who carried out pioneering work in co-ordination chemistry at the University of Zurich under Alfred Werner. She is thought to be the first British woman to obtain a doctorate in chemistry and the first chemist to synthesize a chiral inorganic complex.

<span class="mw-page-title-main">Bisdehydrodoisynolic acid</span> Chemical compound

Bisdehydrodoisynolic acid (BDDA), as the (Z)-isomer ( -BDDA), is a synthetic, nonsteroidal estrogen related to doisynolic acid that was never marketed. It is one of the most potent estrogens known, although it has more recently been characterized as a selective estrogen receptor modulator (SERM). BDDA and other doisynolic acid derivatives display relatively low affinity accompanied by disproportionately high estrogenic potency in vivo, which was eventually determined to be due to transformation into metabolites with greater estrogenic activity. The drug was discovered in 1947 as a degradation product of the reaction of equilenin or dihydroequilenin with potassium hydroxide. It is the seco-analogue of equilenin, while doisynolic acid is the seco-analogue of estrone. These compounds, along with diethylstilbestrol, can be considered to be open-ring analogues of estradiol. The methyl ether of BDDA, doisynoestrol, is also an estrogen, and in contrast to BDDA, has been marketed.

<span class="mw-page-title-main">John A. Gladysz</span>

John A. Gladysz, an organometallic chemist, is a Distinguished Professor and holds the Dow Chair in Chemical Invention at Texas A&M University. Professor Gladysz is a native of the Kalamazoo, Michigan area. He obtained his B.S. degree from the University of Michigan (1971) and his Ph.D. degree from Stanford University (1974). He subsequently held faculty positions at UCLA (1974-1982) and the University of Utah (1982-1998). He then accepted the Chair of Organic Chemistry at the University of Erlangen-Nuremberg in Germany. In 2008, he returned to North America as a distinguished professor and holder of the Dow Chair in Chemical Invention at Texas A&M University.

<span class="mw-page-title-main">Luis Moroder</span>

Luis Moroder is an Italian peptide chemist, who pioneered research on the interactions between peptide hormones and cell membrane-bound hormone receptors. He later expanded this research to other biological systems of medical relevance such as protein inhibitors, collagens, and synthetic proteins. A hallmark of his research is interdisciplinarity as reflected in his use and development of methods in organic chemistry, biophysics and molecular biology. He is a co-editor of the five-volume Houben-Weyl, Methods of Organic Chemistry, Synthesis of Peptides and Peptidomimetics. Since 2008 he is the editor-in-chief of the Journal of Peptide Science, the official journal of the European Peptide Society.

References

  1. 1 2 The Michigan Alumnus, Volume 47. p. 119.
  2. Bachmann, Werner E.; Cole, Wayne; Wilds, Alfred L. (1940). "The Total Synthesis of the Sex Hormone Equilenin and Its Stereoisomers". J. Am. Chem. Soc. 62 (4): 824–839. doi:10.1021/ja01861a036.