Alizarine Yellow R

Last updated
Alizarine Yellow R
Alizarin-yellow-R-1718-34-9-sodium-salt-2D-skeletal.png
Alizarine-Yellow-R-sodium-3D-spacefill.png
Alizarin-yellow-R-2243-76-7-acid-2D-skeletal.png
Names
IUPAC name
Sodium 2-hydroxy-5-[(E)-(4-nitrophenyl)diazenyl]benzoate
Other names
5-[(p-Nitrophenyl)azo]salicylic acid sodium salt
Chrome orange
Mordant orange 1
C.I. 14030
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.017.109 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-536-1
PubChem CID
UNII
  • InChI=1S/C13H9N3O5.Na/c17-12-6-3-9(7-11(12)13(18)19)15-14-8-1-4-10(5-2-8)16(20)21;/h1-7,17H,(H,18,19);/q;+1/p-1/b15-14+; Yes check.svgY
    Key: HXKKTXMJSVFQSL-WPDLWGESSA-M Yes check.svgY
  • InChI=1/C13H9N3O5.Na/c17-12-6-3-9(7-11(12)13(18)19)15-14-8-1-4-10(5-2-8)16(20)21;/h1-7,17H,(H,18,19);/q;+1/p-1/b15-14+;
    Key: HXKKTXMJSVFQSL-QUIZLSBABP
  • [Na+].O=C([O-])c1cc(ccc1O)/N=N/c2ccc(cc2)[N+]([O-])=O
Properties
C13H8N3NaO5 (Na salt)
C13H9N3O5 (acid)
Molar mass 309.21 g mol−1 (Na salt)
287.23 g mol−1 (acid)
HazardsSigma-Aldrich Co., ALIZARINE YELLOW R. Retrieved on 09 April 2023.
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H302, H319
P264, P270, P280, P301+P312, P305+P351+P338, P330, P337+P313, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Alizarine Yellow R(pH indicator)
below pH 10.1above pH 12.0
10.112.0

Alizarine Yellow R is a yellow colored azo dye made by the diazo coupling reaction. It is usually commercially available as a sodium salt. In its pure form, it is a rust-colored solid. [2] It is mainly used as a pH indicator.

Contents

Preparation

Alizarine Yellow R is produced by azo coupling of salicylic acid and diazonium derivative of 4-Nitroaniline

Synthese von Alizaringelb R.svg

Related Research Articles

<span class="mw-page-title-main">Dye</span> Soluble chemical substance or natural material which can impart color to other materials

A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and may require a mordant to improve the fastness of the dye on the fiber.

<span class="mw-page-title-main">Alizarin</span> Chemical compound and histologic stain

Alizarin is an organic compound with formula C
14
H
8
O
4
that has been used throughout history as a prominent red dye, principally for dyeing textile fabrics. Historically it was derived from the roots of plants of the madder genus. In 1869, it became the first natural dye to be produced synthetically.

Alizarine ink was created in 1855 by Professor Christian August Leonhardi of Dresden, Germany, by adding alizarin dye to conventional iron gall ink. This added an attractive coloration to the ink, which was quite popular until it was replaced by more modern chemical inks.

<span class="mw-page-title-main">Azobenzene</span> Two phenyl rings linked by a N═N double bond

Azobenzene is a photoswitchable chemical compound composed of two phenyl rings linked by a N=N double bond. It is the simplest example of an aryl azo compound. The term 'azobenzene' or simply 'azo' is often used to refer to a wide class of similar compounds. These azo compounds are considered as derivatives of diazene (diimide), and are sometimes referred to as 'diazenes'. The diazenes absorb light strongly and are common dyes.

<span class="mw-page-title-main">Azo compound</span> Organic compounds with a diazenyl group (–N=N–)

Azo compounds are organic compounds bearing the functional group diazenyl.

<span class="mw-page-title-main">Sudan I</span> Chemical compound

Sudan I is an organic compound, typically classified as an azo dye. It is an intensely orange-red solid that is added to colourise waxes, oils, petrol, solvents, and polishes. Sudan I has also been adopted for colouring various foodstuffs, especially curry powder and chili powder, although the use of Sudan I in foods is now banned in many countries, because Sudan I, Sudan III, and Sudan IV have been classified as category 3 carcinogens by the International Agency for Research on Cancer. Sudan I is still used in some orange-coloured smoke formulations and as a colouring for cotton refuse used in chemistry experiments.

<span class="mw-page-title-main">Mordant red 19</span> Chemical compound

Mordant red 19 is an organic compound with the chemical formula C16H13ClN4O5S. It is classified as an azo dye.

<span class="mw-page-title-main">1,2,4-Trihydroxyanthraquinone</span> Chemical compound

1,2,4-Trihydroxyanthraquinone, commonly called purpurin, is an anthraquinone. It is a naturally occurring red/yellow dye. It is formally derived from 9,10-anthraquinone by replacement of three hydrogen atoms by hydroxyl (OH) groups.

<span class="mw-page-title-main">Azo dye</span> Class of organic compounds used as dye

Azo dyes are organic compounds bearing the functional group R−N=N−R′, in which R and R′ are usually aryl and substituted aryl groups. They are a commercially important family of azo compounds, i.e. compounds containing the C-N=N-C linkage. Azo dyes are synthetic dyes and do not occur naturally. Most azo dyes contain only one azo group but there are some that contain two or three azo groups, called "diazo dyes" and "triazo dyes" respectively. Azo dyes comprise 60-70% of all dyes used in food and textile industries. Azo dyes are widely used to treat textiles, leather articles, and some foods. Chemically related derivatives of azo dyes include azo pigments, which are insoluble in water and other solvents.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide.

In organic chemistry, an azo coupling is an organic reaction between a diazonium compound and another aromatic compound that produces an azo compound. In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile and the activated carbon act as a nucleophile. In most cases, including the examples below, the diazonium compound is also aromatic.

<span class="mw-page-title-main">Allura Red AC</span> Chemical compound

Allura Red AC is a red azo dye that goes by several names, including FD&C Red 40. It is used as a food dye and has the E number E129.

Bismarck brown Y also called C.I. 21000 and C.I. Basic Brown 1, is a diazo dye with the idealized formula [(H2N)2C6H3N2]2C6H4. The dye is a mixture of closely related compounds. It was one of the earliest azo dyes, being described in 1863 by German chemist Carl Alexander von Martius. It is used in histology for staining tissues.

<span class="mw-page-title-main">Anthranilic acid</span> Chemical compound

Anthranilic acid is an aromatic acid with the formula C6H4(NH2)(CO2H) and has a sweetish taste. The molecule consists of a benzene ring, ortho-substituted with a carboxylic acid and an amine. As a result of containing both acidic and basic functional groups, the compound is amphoteric. Anthranilic acid is a white solid when pure, although commercial samples may appear yellow. The anion [C6H4(NH2)(CO2)], obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was once thought to be a vitamin and was referred to as vitamin L1 in that context, but it is now known to be non-essential in human nutrition.

<span class="mw-page-title-main">Sulfanilic acid</span> Chemical compound

Sulfanilic acid (4-aminobenzenesulfonic acid) is an organic compound with the formula H3NC6H4SO3. It is an off-white solid. It is a zwitterion, which explains its high melting point. It is a common building block in organic chemistry.

<span class="mw-page-title-main">Azo violet</span> Chemical compound

Azo violet (Magneson I; p-nitrobenzeneazoresorcinol) is an azo compound with the chemical formula C12H9N3O4. It is used commercially as a violet dye and experimentally as a pH indicator, appearing yellow below pH 11, and violet above pH 13. It also turns deep blue in the presence of magnesium salt in a slightly alkaline, or basic, environment. Azo violet may also be used to test for the presence of ammonium ions. The color of ammonium chloride or ammonium hydroxide solution will vary depending upon the concentration of azo violet used. Magneson I is used to test Be also; it produces an orange-red lake with Be(II) in alkaline medium.

Disperse dye is a category of synthetic dye intended for polyester and related hydrophobic fibers. Disperse dyes are polar molecules containing anthraquinone or azo groups. It is estimated that 85% of disperse dyes are azos or anthraquinone dyes.

<span class="mw-page-title-main">3-Hydroxy-2-naphthoic acid</span> Chemical compound

3-Hydroxy-2-naphthoic acid is an organic compound with the formula C10H6(OH)(CO2H). It is one of the several carboxylic acids derived from 2-naphthol. It is a common precursor to azo dyes and pigments. It is prepared by carboxylation of 2-naphthol via the Kolbe–Schmitt reaction.

<span class="mw-page-title-main">Solvent Yellow 7</span> Chemical compound

Solvent Yellow 7 is a common azo dye with a formula of C6H5N2C6H4OH.

<span class="mw-page-title-main">Synthetic colorant</span>


A colorant is any substance that changes the spectral transmittance or reflectance of a material. Synthetic colorants are those created in a laboratory or industrial setting. The production and improvement of colorants was a driver of the early synthetic chemical industry, in fact many of today's largest chemical producers started as dye-works in the late 19th or early 20th centuries, including Bayer AG(1863). Synthetics are extremely attractive for industrial and aesthetic purposes as they have they often achieve higher intensity and color fastness than comparable natural pigments and dyes used since ancient times. Market viable large scale production of dyes occurred nearly simultaneously in the early major producing countries Britain (1857), France (1858), Germany (1858), and Switzerland (1859), and expansion of associated chemical industries followed. The mid-nineteenth century through WWII saw an incredible expansion of the variety and scale of manufacture of synthetic colorants. Synthetic colorants quickly became ubiquitous in everyday life, from clothing to food. This stems from the invention of industrial research and development laboratories in the 1870s, and the new awareness of empirical chemical formulas as targets for synthesis by academic chemists. The dye industry became one of the first instances where directed scientific research lead to new products, and the first where this occurred regularly.

References

  1. Lide, David R. (25 June 2007). CRC Handbook of Chemistry and Physics, 88th Edition . CRC Press. pp.  3–10. ISBN   9780849304880. OCLC   1024315229.
  2. "Safety Datasheet (MSDS) for alizarin yellow R". Department of Chemistry, University of Oxford. 2005. Archived from the original on 19 March 2011. Retrieved 11 October 2008.